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Executive Summary 
NSA, the DOE Office of Science, and the DOE National Nuclear Security Administration (NNSA) 

(in this document, these latter two organizations are referred to as “DOE”) recognize the 

imperative to develop new mechanisms for engagement with the vendor community, particularly 

on architectural innovations with strategic value to USG HPC. Project 38 is an interagency 

collaboration between NSA and the DOE, focusing on a set of vendor-agnostic architectural 

explorations.  These explorations are intended to accomplish the following: 

Near-term goal: Quantify the performance value and identify the potential costs of specific 

architectural concepts against a limited, focused set of applications of interest to both the DOE and 

NSA. 

Long-term goal: Develop an enduring capability for DOE and NSA to jointly explore 

architectural innovations and quantify their value. 

Project 38 has made significant progress in meeting its near-term goal, and is beginning to share 

initial exploration results with the wider HPC community, both industry and academia. 
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1 Motivation 
The technology ecosystem for acquiring HPC systems of interest to DOE and NSA is becoming 

less favorable. The DOE and NSA have mission-critical application requirements that will not be 

satisfied by future HPC systems.  The commercial HPC market is shrinking, focused on a relatively 

specific balance of computation and communication resources, and increasingly driven by a 

narrow class of deep-learning applications. The relatively small size of this market means the 

architectural diversity of commercial offerings are low, even though architectural specialization 

has been shown to provide performance benefits.  In addition, the HPC ecosystem is under 

significant pressure from data center customers (Google, Facebook, etc.), which skews the 

computing market in ways that are not advantageous to NSA and DOE HPC needs. 

USG HPC must make substantial investments to either acquire or build systems as they have 

mission drivers for architectural features that are not aligned with commercial drivers. These 

leading-edge HPC systems also tend to be more difficult for application developers and customers 

to port their codes and use productively. 

The DOE has traditionally followed a “set requirements, solicit bids, deploy system” process, often 

with substantial Non-Recurring Engineering investments to influence architectural designs or add 

software features which otherwise would not be available in the vendors’ regular product offerings. 

In addition, the prior DOE FastForward, DesignForward and PathForward efforts (starting in 

FY2012) modified this approach to influence vendors to pursue HPC-driven technology 

developments. In the current landscape where specialized hardware is increasingly important, USG 

HPC experts need to engage earlier and more directly in the design process to expand the scope of 

influence the DOE and NSA can have on the system design.  If we do nothing, the narrow set of 

offerings is likely to continue - or even become worse due to the HPC ecosystem pressures noted 

earlier, and the looming end of Moore's Law lithography-based improvements.  

Purpose-built architectures are a promising approach to improve this situation.  While joint 

explorations/collaborations on purpose-built architectures can be effective, they require a new 

approach to exploring, designing and developing HPC systems.  A successful DOE-NSA 

collaboration on architectural explorations for mission-critical applications would provide 

important technical information to increase the effectiveness of USG investments in HPC. 

Project 38 will create a new way for USG HPC to engage with industry.  If successful, it will 

broaden the industry players and develop more diversity in industry roadmaps.  Purpose-built 

systems will become more common, widening the range of architectures and technologies 

available in general-purpose HPC systems, thereby reducing system development and acquisition 

costs. 

This approach is a fundamentally new way of collaborating, which provides the USG with 

maximum ability to influence the future direction of HPC systems, components, and technologies. 

Both NSA and DOE recognize the potential value of these collaborations and are highly motivated 

to make them successful. 
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2 Business Plan (potential paths to system level impact) 

The first implementation path is ‘aggressive vendor partnerships.’  In this approach, the USG 

collaborates with vendor research teams to explore architectural concepts that vendors might not 

otherwise consider due to market pressure.  These concepts should be significant advances, and 

will presumably be more aggressive than existing industry efforts (either the innovations 

themselves or the timeline for introducing them).  This approach builds on the architecture 

foundation of the vendors’ respective technology roadmaps.  As such, this approach focuses on 

closing gaps and accelerating technology roadmaps. 
 

The second is ‘innovative USG design.’  In this approach, the USG becomes much more 

purposeful in the overall architecture and design, incorporating features and functions specifically 

targeted to support USG applications.  This approach would enable the USG to develop purpose-

built, advanced architectures that define new, perhaps disruptive, hardware designs that are not 

built on pre-existing product roadmaps. 
 

Together, these paths enable the USG to evaluate two points on the risk-reward spectrum.  The 

first implementation path has much more vendor collaboration, which presumably lowers the risk, 

and possibly the expense, of a successful HPC system delivery as an outcome.  The improvement 

in the performance of the system on critical applications may be lower than a completely purpose-

built architecture.  The second path entails more risk (and possibly expense) for the USG; the 

performance improvement may be quite significant – purpose built architectures can show orders 

of magnitude improvement over more general-purpose designs. 
 

Project 38 is currently focused on sharing its initial results with the wider HPC community. 

3 Exemplar Applications 

3.1 FFT 

1D FFT based on the HPC Challenge benchmarks [HCC06].  The benchmark selected is a 32-bit 

floating point complex out-of-place transform with 1Gigabyte transform size (so as to be outside 

of the limits of on-chip memory). The transforms were computed using the FFTW library [FTW05] 

on CPU and Intel Xeon Phi devices, and using the cuFFT library [CUF19] on GPUs. 

 

3.2 Kripke (radiation transport) 

KRIPKE [KRIPKE15] was developed to study the performance characteristics of data layouts, 

programming models, and sweep algorithms. KRIPKE is designed to support different in-memory 

data layouts, and allows work to be grouped into sets in order to expose more on-node parallelism. 

Different data layouts change the way in which software is implemented, how that software is 

compiled for a given architecture, and how that generated code eventually performs on a given 

architecture.  This benchmark emphasizes word-granularity gather/scatter requirements for the 

memory subsystem. 

 

3.3 MTC (Quantum Simulations) 

Mini-tensor contraction (MTC) is a microbenchmark kernel representing the contraction, 

scatter/gather and transpose operations for high dimensional tensor operations with irregular index 

patterns.  These are some of the limiting factors in achieving high performance for current 



 

 

6 

architectures in quantum simulations in chemistry (NWChem, MADNESS), material science 

(LSMS, QMCPACK), and nuclear structures (NUCCOR).  One example which chemists have 

developed over the years is the Tensor Contraction Engine (https://www.csc.lsu.edu/~gb/TCE/ ) 

[TCE05], a source to source translator, in an attempt to solve this problem.  The MTC tensor kernel 

normally has high bandwidth waste on fetching non-contiguous data, contractions of 4D and 6D 

tensors, indices which are dynamically changing, typical of many current applications. It 

emphasizes word-granularity gather/scatter, irregular memory access, and data transpose 

requirements for the memory subsystems. 

 

3.4 Stencil/PDE-solver 

Stencil codes (e.g., [HPGMG14, HOMME07]) are a class of iterative kernels which update the 

array elements according to a fixed pattern. It is common in high-performance computer 

simulations that model the physical phenomena (such as fluid dynamics and heat diffusion) 

through finite difference or finite element methods. The stencil kernels normally have a high ratio 

of memory accesses to calculations and thus are memory-bound. When the stencil dataset is 

partitioned across different cores, exchange between the halo regions may incur significant 

communication overhead. This benchmark emphasizes the word-granularity scratchpad’s benefit 

on reducing the overheads for halo-exchange and eliminating coherence overheads. 

 

3.5 HipMER (bioinformatics) 

HipMer [HIPMER17] is a parallel genome assembler pipeline that has been shown to scale to 

massive concurrencies.  The benchmark version, called Meraculous, captures one stage of the 

HipMer computation and was developed as part of the NERSC-9 benchmark suite.  Meraculous 

emphasizes system-wide random memory writes to construct a global hash-table of genomic 

fragments in order to find identical fragments which can be used to seed searches for longer 

(imperfect) matches.  The application uses random access into the hash table memory, which 

differs from typical gather-scatter workloads in that the random access are individual rather than 

grouped.  The hash table inserts and lookups are performed across nodes, so the benchmark 

performs small remote reads and writes (64bits or less) with nearly random communicating 

partners.  Remote atomic operations like compare-and-swap are also key.  One of the key local 

computations within HipMer’s later stages is sequence alignment, identifying the match between 

two strings with the minimum number of insertions, deletions or replacements. 

 

3.6 Sparse Matrix Trisolve (SpMTrsv) / SuperLU 

Solving system of equations of the form Ax=b where A is a sparse triangular matrix, is required 

after the factorization phase in the direct methods of solving systems of linear equation (e.g., 

[SUPERLU05]).  As a result, the triangular solver is an important computational kernel in many 

applications. On-node parallelism is increasingly important. Multiple approaches underlying 

multithreaded triangular solvers exist, but the overheads of direct execution of the dependency 

graph for the trisolve is a serious inhibitor to scalable performance. 

 

3.7 HPGMG 

HPGMG (High-performance Geometric Multigrid) [HPGMG14] contains both a finite element 

and a finite volume implementation of full multigrid algorithms. While HPGMG stresses floating 

point computation and the memory subsystem, it is primarily designed to stress system 

https://www.csc.lsu.edu/~gb/TCE/
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interconnects. The inability to hide communication limits effective scaling in large-scale systems. 

This benchmark emphasizes the need to reduce communication traffic across the memory 

subsystem and across nodes 

 

3.8 References 

[CUF19] cuFFT v.10.1 official documentation. https://docs.nvidia.com/cuda/cufft/index.html. 

Accessed: 2019-07-24. 

 

[FTW05] Matteo Frigo and Steven G. Johnson, The Design and Implementation of FFTW3, in 
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Rabenseifner, and Daisuke Takahashi, The HPC Challenge (HPCC) Benchmark Suite, in 
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[HIPMER17] Georganas, et al., “MerBench: PGAS benchmarks for high performance genome 

assembly,” PAW, 2017. 

 

[HPGMG14] Adams, et al., “HPGMG 1.0: A benchmark for ranking high performance computing 

systems,” Tech report, hpgmg.org, 2014. 

 

[KRIPKE15] Kunen, et al., “Kripke - A massively parallel transport mini-app,” American Nuclear 

Society M&C, April 2015. 
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4 Word Granularity Scratchpads for Gather/Scatter 
4.1 Motivation 

Numerous algorithms, including sparse matrices, tensor contractions, and many PDEs require 

good gather-scatter performance feeding wide vector units. However, common cache-line-oriented 

memory structures greatly reduce the efficiency of gather scatter operations.  A word-granularity 

scratchpad can enable wide-vector units to perform at near maximum throughput, even for strided 

or highly irregular memory access patterns. We also note that it would be challenging to implement 

a scalable cache coherence policy that operates at a word granularity, so moving to word-

granularity forces an alternate approach. 

 

https://docs.nvidia.com/cuda/cufft/index.html
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4.2 Architecture/Implementation 

The scratchpad must be organized as at least 16 independent 64-bit (word-granularity) “lanes” to 

match the performance of a 128-bit cache line. We propose to expand to 64 lanes to reduce bank 

conflicts for an 8-slot AVX-512-like vector unit by a factor of 4x over the worst-case baseline. 

These 64-lanes are also the natural interface-point to the Recoding Engine described in the prior 

section, which also requires a 64-lane scratchpad memory.  The scratchpad can therefore be shared 

by the AVX and the Recoding Engine.  

 

4.3 Evaluation Conditions 

The hardware architecture parameters (power, area, performance) for the scratchpad and cache 

memory SRAM mats were computed using Cacti [CactiDocs].  Simulation of data access patterns 

using word-granularity vs. cache-line granularity was performed using a PINtool [PINdocsl] to 

intercept the load and store instructions and run them through a memory hierarchy model. 

 

4.4 Results 

Experiment1: This experiment with MTC demonstrates substantially reduced wasted data 

movement for word granularity vs. cache-line granularity for Tensor Contractions.  The 

application used in this example is MTC, which is a microbenchmark meant to mimic high 

dimensional tensor calculations and is integral to quantum simulation software.  We define 

“wasted data movement” as the ratio of useful vs. 

unnecessary data moved during load/store operations 

- ((fetched words-useful words)/useful words). 

 

The figure to the left shows AVX performance 

measured by Intel’s vTune as a function of memory 

stride.  Performance drops off by a factor of 8x or 

more with even small strides in the gather pattern.  

The word granularity scratchpad is intended to 

eliminate this massive compute performance 

degradation while simultaneously reducing the 

amount of unnecessary data movement for such 

gather operations. 

 

Experiment2: We demonstrate that the word granularity scratchpad enables a 4.5x increased ability 

to strong-scale PDEs on block-structured grids.  We use the simple PDE solver that evolves the 

hyperbolic wave equation in 3D as our benchmark kernel for this experiment.  We built an analytic 

model of the cache+prefetch design with a small cache-block size that modeled both the prefetch 

warm-up time, and the latency incurred by reading the ghost-zone data from other cores (the 

coherence latency) along with the grind-time for the compute part of the kernel.  The analytic 

model was calibrated against a full cycle accurate architecture model, and the analytic model was 

used for the majority of the design space exploration because the cycle-accurate simulation would 

have been too slow to cover the full design space.  We also used a script to automatically search 

through all possible loop blocking configurations to find the optimal implementation for each 

problem size. 
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Impact: As shown in figure [PDEsolverEval] on the 

left, the word granularity scratchpad greatly 

improved strong-scaling of processing elements 

because of the substantially reduced overheads for 

halo-exchange and by eliminating coherence 

overheads. There are numerous PDE problems that 

have already become limited by the inability to 

strong-scale.  Weak scaling involves growing the 

size of the problem and proportional to the amount of 

parallelism to hide overheads (which express 

themselves as Amdahl’s law).  However, when you 

increase the problem resolution by a factor of N, the time-step must be decreased by a factor of 

N^2 to N^3 (depending on problem dimensionality) to maintain the Courant stability condition.  

The result is that the time it requires to solve such problems as resolution increases is growing 

exponentially.  The dramatically reduced overhead enables more processing elements to be applied 

to a fixed problem size so that more speedup is possible with a larger number of cores (e.g. 4.5x 

increased strong-scaling over conventional cache). 

  

Experiment3: The area and latency benefit of the scratchpad compared to cache is studied with the 

Cacti model [CactiDocs]. As shown in the figure, the scratchpad capacity is 72% larger than the 

cache when meeting the 1ns access latency (L1 speed). This substantially increases the amount of 

fast processor-local memory available to the accelerator cores. Additionally, word granularity 

scratchpads can be seen as “packed” caches which make better use of space. 

 

 

 

 

Figure [SRAM-area-timing] on the left 

shows the area and latency comparison 

between scratchpad and cache under 32nm 

technology. 

 

 

 

4.5 Software 

Traditionally scratchpad memories have been considered much more difficult to program than a 

conventional automatically managed cache.  However, with the broad adoption of GPUs, which 

require a similar explicit copy-data-in + copy-data-out semantics to move data from the host to 

accelerator memory, the data movement operations can largely be automated using OpenMP and 

OpenACC style constructs.  So, increased user familiarity with software managed memories 

(through the GPU experience) and today’s software tools make coding manageable. 
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Besides, the scratchpad memory can be operated side-by-side with a conventional cache, provided 

an appropriate memory consistency model is used to avoid conflicts (such as adopting the GPU 

release consistency model).  These concepts have been demonstrated to be partitionable to support 

both capabilities concurrently (and are supported by modern embedded core and DSP design 

libraries) [VirtualLocalStore].  Additionally, the software managed memories can be mapped into 

a global address space with little added complexity, to enable a very lightweight PGAS 

communication model with zero software overhead for inter-processor data exchange. 

 

No additional code generation for vector instructions (such as SVE or AVX) would be required to 

access data that is placed in the local store – strided accesses would see no degradation except in 

the case of cache bank conflict. 

 

4.6 References 

[GreenFlash] John Shalf, David Donofrio, Chris Rowen, Leonid Oliker, Michael F. Wehner: 

Green Flash: Climate Machine Encyclopedia of Parallel Computing 2011: 809-819 

 

[GreenFlash2] 

https://cloudfront.escholarship.org/dist/prd/content/qt5958c7vj/qt5958c7vj.pdf 

 

[VirtualLocalStore] Henry Cook, Miquel Moretó, Sarah Bird, Khanh Dao, David A. Patterson, 

Krste Asanovic: A hardware evaluation of cache partitioning to improve utilization and 

energy-efficiency while preserving responsiveness. ISCA2013: 308-319 

 

[CactiDocs] Muralimanohar, Naveen, Rajeev Balasubramonian, and Norman P. Jouppi. "CACTI 

6.0: A tool to model large caches." HP laboratories 27 (2009): 28. 

 

[PINdocs] Levi, Osnat. "Pin-a dynamic binary instrumentation tool." (2018). 

5 Recode Engine 
5.1 Motivation 

Data movement cost is a critical performance concern.  Recode/UDP (Unstructured Data 

Processor) is an efficient, software programmable, data recoding accelerator that is orders of 

magnitude more energy-efficient (1,900x) and area-efficient than conventional CPU cores on 

recoding tasks [Acc19, UDP17, UAP15] as illustrated in Figure UDP-PERF.  These capabilities 

enable systems/applications to select the right encoding of data for each stage of the computation, 

and in each part of the system (core, LLC, main memory, storage), and can enable significant 

performance increases as well as power and bandwidth reductions at fixed performance. 

http://dblp.uni-trier.de/pers/hd/s/Shalf:John
http://dblp.uni-trier.de/pers/hd/r/Rowen:Chris
http://dblp.uni-trier.de/pers/hd/o/Oliker:Leonid
http://dblp.uni-trier.de/pers/hd/w/Wehner:Michael_F=
http://dblp.uni-trier.de/db/reference/parallel/parallel2011.html#ShalfDROW11
http://dblp.uni-trier.de/pers/hd/c/Cook:Henry
http://dblp.uni-trier.de/pers/hd/m/Moret=oacute=:Miquel
http://dblp.uni-trier.de/pers/hd/m/Moret=oacute=:Miquel
http://dblp.uni-trier.de/pers/hd/b/Bird:Sarah
http://dblp.uni-trier.de/pers/hd/b/Bird:Sarah
http://dblp.uni-trier.de/pers/hd/d/Dao:Khanh
http://dblp.uni-trier.de/pers/hd/d/Dao:Khanh
http://dblp.uni-trier.de/pers/hd/a/Asanovic:Krste
http://dblp.uni-trier.de/pers/hd/a/Asanovic:Krste
http://dblp.uni-trier.de/pers/hd/a/Asanovic:Krste
http://dblp.uni-trier.de/db/conf/isca/isca2013.html#CookMBDPA13
http://dblp.uni-trier.de/db/conf/isca/isca2013.html#CookMBDPA13
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Figure UDP-PERF: Relative Performance of the Recode/UDP to an x86 core. 

 

5.2 Evaluation/Results 

We evaluated the Recode Engine on streaming SpMV computations for a wide range of the TaMU 

Sparse Matrix collection [HCW19], and report on selected matrices from Project 38, in Figure 

RECODE.  Programmability enables the matrix encoding to be selected for effectiveness - here 

we use a delta, LZ, Huffman combination. Other applications well studied with even greater 

performance benefits include regex matching, network flow monitoring, export-transform-load 

(ETL) and data analytics [UAP15, UDP17, Acc19] as in Figure Acc. 

 

Figure RECODE: Recode Memory Hierarchy Integration and SpMV Performance benefits 
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Figure Acc: TPC-H Raw Data Processing: Recode can effectively eliminate the cost (16x) of Raw 

Data processing  

 

5.3 Implementation/Architecture 

Placement of the Recode engine in the system architecture has several options: Scratchpad/L1 

attach and LLC/MC attached on the CPU chip.  In other research, storage attach is being explored 

as is cooperation between a Recode engine and flexible scatter-gather units (See Section 6). 

 

5.4 Software 

The software programming model for Recoding transformations will be familiar to developers 

who have used various forms of accelerators.  Note that applications, or sections of code, that do 

not use or need the Recoding Engine can simply ignore it.  For common transformations, one 

simply calls library functions that have been built for the Recoding Engine.  For example, a set of 

assembly-coded libraries are available for Regex and for operations such as LZ compression, delta 

encoding, run-length, Huffman and so on. 

  

In cases where an existing transformation is not available, we are developing high level tools to 

support code development with a familiar C-level source interface. The programming environment 

includes LLVM compiler code generation and a library composition framework to ease use by 

applications and amplify performance benefits.  The compiler will recognize patterns, e.g., sparse 

matrix operations, and automatically target the Recode Engine.  System software and runtime 

additions will complete the Recoding support. 
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Sparse Matrices in a Data-movement Limited World , in Heterogeneous Computing Workshop 
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6 Flexible Scatter-Gather Memory Controller 
6.1 Motivation 

HPC applications are often thought of as “math-heavy.” However, analysis of these application’s 

actual dynamic instruction mix usually reveals that floating-point instructions make up only a 

small portion of total instructions (see Figure [MemUse]). Inspection of the code indicates that the 

majority of integer instructions are used to calculate memory addresses. 

 

It is reasonable to say that what HPC programs really “do” is not floating-point, but memory. 

Unfortunately, memory performance is still the limiting factor for on-node performance of many 

HPC applications. In three of the four applications studied, for every cacheline of eight words that 

is brought to the L1, less than 5.6 words (mean) were used before the line was evicted. These 

miniapps appear to waste 30-35% of their cacheline data and the bandwidth which feeds it. Just as 

it is reasonable to say that HPC programs really “do” memory, it is also reasonable to say that 

we do it somewhat poorly. 

 

  

 
 

 

Figure [MemUse]: Memory use and misuse in HPC applications 

6.2 Architecture 

Our proposed architecture is a near-memory scatter-gather unit (SGU), similar to the Data 

Rearrangement Engine (DRE) [DRE], which gathers (scatters) data in to (from) a scratchpad. In 
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this model, the memory transactions are issued by the DRE to a near-memory controller and only 

packed cache lines are forwarded to (received from) the CPU. Near-memory scatter/gather 

conserves memory bandwidth and reduces cache pollution. Calculations with the packed data can 

be vectorized or fed to a Recode Engine, yielding even greater performance benefits. While this 

work focuses on applications performing memory moves, it could be part of a longer function 

pipeline such as a key/value store lookup accelerator [KVStore].  

 

 

 

 

Figure [KVStore] Open 

address hash table lookup 

pipeline uses DRE components 

to access hash table slots 

 

 

 

 

 

 

 

6.3 Software Issues 

The most direct programming model for scatter-gather units is the setup/fill/drain model first 

developed for the DRE architecture. In this model the SGU is first configured (setup) with base 

addresses and sizes of data structures, and then fill and drain commands are used to fill a scratchpad 

with gathered values or to scatter values from the scratchpad out to memory. 

 

This pattern can be used by higher level abstractions, such as those found in emerging HPC 

performance portability frameworks like Kokkos [Kokkos] and Raja [Raja]. Setup/fill/drain 

commands, could map into framework abstractions such as Kokkos' Kokkos::View or the 

proposed C++2x mdarrary which support arbitrary load mechanisms on access.  

 

Sharing of memory regions between CPU and near memory scatter-gather units requires careful 

coordination. In the absence of a near-memory MMU, the hardware architecture of the near-

memory SGU is most efficient when applied to large contiguous physical memory regions. To 

support contiguous physical memory allocation through the OS, a Linux Contiguous Memory 

Allocator (CMA) region can be reserved at boot time. Other approaches are investigated by the 

Spidre architecture. 

 

6.4 Evaluation 

Preliminary analysis was performed with the Structural Simulation Toolkit (SST) [SST] and with 

gem5 [GEM5]. The SST was modified to include a simple SGU attached to the memory system 
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and gem5 with a similar module [PIMSIM]. Simulations were performed in two ̀ `modes'': Prefetch 

and Scratchpad. 

 

In the Prefetch mode, the SGU acted only as a 

prefetcher targeting the cache. A command is 

issued from the processor to the SGU which 

begins loading from memory into the processor's 

cache.  This has the benefit of easier 

implementation - no new memory has to be 

added to the processor chip, and no 

synchronization is required between the 

processor core and the SGU. The downside is the 

possibility that prefetched lines will be evicted 

before they can be used, reducing efficiency.  

 

In Scratchpad mode, the SGU transfers data 

to/from a user-visible scratchpad. This scratchpad is physically located next to the L1 and virtually 

located in a reserved portion of the address space. We assume a hardware synchronization 

mechanism between the core and scratchpad which delays any load to scratchpad data that has not 

yet arrived.  

Sections of each target application were manually modified to add control information for the 

SGU. For the hpgmg application we examined two different scatter-gather strategies, gathering 

across different loop nestings.  

 

6.5 Results 

The most important goal of the SGU study is to evaluate how much the SGU can improve whole 

application performance. Simulations for the SGU in Prefetch mode (Figure [SGPerf]) indicate 

that for the chosen application set execution time improves by 15-28%. Though these numbers are 

substantial, it should be noted that this is total application performance. Since only a portion of the 

memory accesses (30-50%) are amenable to SGU acceleration, the speedup of these portions is 

even higher - 30-270%. Also, these results show that a poor scatter-gather operation (the alternate 

``hpgmg-ijk'' strategy tried with hpgmg) can lead to poor performance. 

  

 

 

 

Figure [SGPerf]: Performance 

improvement for different applications 

using the SGU as a prefetcher 
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The SGU improves the L1 miss rate. The impact on miss rate is modest for Kripke and hpgmg 

(<18%), but substantial for XSBench, reducing L1 misses by over 50%. Another benefit of the 

SGU is that it offloads many address calculations from the CPU cores into the memory system. 

Though it accounts for only a small minority of instructions on most codes (4-9%), for XSBench 

it is close to 15%. 

 

Performance results for the SGU to Scratchpad case are not yet available. However, early 

simulation does provide some positive findings. Most data which is moved to the scratchpad by 

the SGU is reused several times before the scratchpad is cleared. For example, on average each 

hpgmg data word is accessed 25.8 times before it is drained.  It is possible that with a more adept 

SGU strategy and better application knowledge the reuse rate could be even higher.  Another useful 

result is the SGU requires relatively modest scratchpad sizes of 6768 to 41080 bytes – similar to 

or smaller than an L1 cache.  

 

Simulations with gem5+PIMSIM show the limits of in-memory scatter/gather. For applications 

sizes which already achieve a high cache-hit rate and are amenable to existing vector extensions 

(e.g. ARM SVE), an SGU may not be effective as the latency to memory is higher than to cache. 

Additionally, care must be taken in cache management (e.g. invalidation/flushing) to ensure ‘good’ 

data is not lost. 

6.6 SGU + Recode Engine 

Scatter/gather hardware can be used in conjunction with other modules. For example, a combined 

architecture in which the DRE gathers sparse data for processing by the Recode Engine, as 

illustrated in Figure [SGArch]. In this model, the SGU gathers sparse accesses to the dense vector 

while the Recode Engine performs the dot products. Early results (Figure [RCDREperf]) indicate 

that combining the SGU and Recode engine can lead to a 40% improvement on sparse matrix-

vector multiple compared to the SGU alone. 

 

 

Figure [RCDREperf] MFlop/s for SpMV with Recode+SGU. 
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Figure [SGArch]: DRE and Recode engine 
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7 Low-Overhead Interprocessor Messaging (MessageQueues) 
7.1 Motivation 

DAG-type communication patterns are widely-used to express complex dependent operations in 

sparse matrix computations.  Libraries such as PLASMA and MAGMA [Dongarra] and SuperLU 

[SherryLi] demonstrated opportunities for increased parallel efficiency of such algorithms, but 

cache-coherence mechanisms alone are inefficient in implementing such communication patterns. 

Traversing each dataflow edge (activate the next step DAG node) is costly, reducing efficiency.  

Direct message queues could improve efficiency for these algorithmic patterns. 

 

7.2 Architecture/Implementation 

Message queues that connect processing elements with hardware-managed atomic insertion can 

eliminate many mutex locks (necessary in cache coherent systems).  Such queues can be integrated 

with word-granularity local store, setting aside some store space for implementation.  Interthread 

latencies can be reduced as shown in figure [MessageQueues] (performance from cycle-accurate 

RTL emulation).  Additional documents describe the complete architecture for the NoC and 

hardware generator [OpenSoC] and evaluation of the message queues using FPGA emulation 

[OpenSoC2].  Message queues implementations are available in embedded design libraries such 

as Tensilica’s TIEqueues and in the ARM design library.   

  

 

 

 

 

 

 

 

 

 

Figure [MessageQueues]: Interprocessor latency: Cache coherence vs. message queues. 

7.3 Experiment 

We used the Sparse Matrix Tri-Solve to assess the impact of message queues on DAG 

communication patterns used to track tri-solve row dependencies.  We instrumented SuperLU to 

collect the dependency graph (DAG) and fed it into an analytic model.   The performance model 

for the cache system was calibrated with vTune on the Xeon Phi platform (NERSC Cori), whereas 

the message queue (MsgQ) model come from a full RTL design [OpenSoC].  In all cases, the Intel 

Xeon Phi (KNL) cores are used for processor core performance.  The DAG for the sparse matrix 

trisolve Figure [TrisolveDAG] tracks the dependencies between rows given the sparsity pattern 

(a).  This can be represented, as level-sets (c), requiring barriers between levels (poor scalability).  

We study directly following the DAG edges as in (b). 
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Figure [TrisolveDAG]: This shows 3 representations of the trisolve dependency graph (DAG). 

 

7.4 Results 

Baseline SuperLU uses OpenMP atomics to track the DAG edges; performance is limited by the 

underlying hardware - not the OpenMP implementation.  vTune measurements show the impact 

of the overhead on trisolve’s overall scalability.   Parallel efficiency suffers as the overheads for 

dependency tracking increasingly dominate runtime (see figure [TrisolveOMP]). 

 

 

Figure [TrisolveOMP]: Breakdown of timing and overheads for sparse matrix trisolve (SuperLU) 

on 64-core KNL. 

  

 

 

Figure [TrisolveMsgQ]: Trisolve performance model is 

used to project scalability of MsgQ vs. OMP 

implementations out to 2^18 compute elements. 
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With direct hardware message queues, performance improves as in Figure [TriSolveMsgQ].   

Beyond 32 cores, the OpenMP implementation’s scaling degrades, and cannot even saturate the 

memory interface of KNL, whereas the MsgQ scales to many more cores and thereby can saturate 

memory bandwidths of 4TB/s or more.  In summary, the hardware message queues for fast 

interprocessor communication offer a 4x-8x improvement of performance over the baseline 

OpenMP/atomics, and offer the ability to scale performance to higher parallelism.  Beyond 

TriSolve, DAG tracking is used in many sophisticated Sparse Matrix algorithms.  

 

7.5 Software 

The message queues interface is typically exposed as intrinsics that look to the programmer to be 

subroutine calls for all practical purposes.  The intrinsics are implemented using macro expansion 

of embedded assembly snippets, or by compiler modification.  In terms of programmer experience, 

many pseudocode implementations of sparse matrix algorithms are expressed using a message 

queue semantics, so we believe programming is natural.  Figure [SuperLUcode] shows a side-by-

side comparison of the OpenMP and MsgQ implementations of the key DAG-tracking kernel for 

SuperLU.  Minimal changes were required, and readability improved. 

 

Figure [SuperLUcode]: Comparison of the OMP and MsgQ implementations’ code.  

7.6 References 

[OpenSoC] Farzad Fatollahi-Fard, David Donofrio, George Michelogiannakis, John Shalf: 

OpenSoC Fabric: On-Chip Network Generator: Using Chisel to Generate a Parameterizable 

On-Chip Interconnect Fabric.NoCArc@MICRO 2014: 45-50. 

  

[OpenSOC2] Farzad Fatollahi-Fard, David Donofrio, George Michelogiannakis, John Shalf: 

OpenSoC Fabric: On-chip network generator. ISPASS 2016: 194-203. 

8 Fixed Function Hardware for FFT and Bioinformatics Acceleration 
8.1 Motivation 

One of the techniques used by the smartphone industry to squeeze extra performance out of an 

SoC is to have dozens of discrete fixed-function accelerators co-integrated onto the chip.  

However, the functionality of those accelerators is tailored to cellphone workloads.   

 

OMP Original Code 
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We wondered whether this strategy could be utilized for accelerating HPC-relevant kernels, and 

what kernels would offer the most benefit.  We started with the FFT challenge problem to better 

understand how fixed-function accelerators can be used productively for scientifically relevant 

kernels using the SPIRAL FFT hardware generator.  This approach does not out-perform tuned 

GPU and CPU software implementations because performance ultimately gets bounded by 

memory bandwidth, but it does achieve a 1-2 orders of magnitude improvement in 

performance/chip-area and performance/watt compared to the CPU and GPU implementations. 

 

We extended this fixed-function accelerator study to investigate a bioinformatics accelerator for 

the HipMER de-novo genome assembly application.  One of the most resource intensive steps of 

the HipMER application is the banded Smith-Waterman (SW) for sequence alignment 

[MerAlign2015].  A conventional implementation of accelerated Smith Waterman is 

fundamentally unscalable because complexity grows with sequence length. For this reason, we 

adopted a String Independent Localized Levenstein Automata (SILLA) approach [GenAx2018], 

which implements a non-deterministic Finite State Automata (FSM) for sequence matching where 

the complexity is independent of sequence size.  Whereas Smith-Waterman FSM is O(N) 

complexity in area and O(N2) compute (where N=sequence length) for the general case and O(kN) 

complexity for banded SW (where k is the match distance), the SILLA FSM is O(k2) in area and 

O(N) in compute complexity.  SILLA FSMs are very simple with 13 logic gates per FSM state 

and multiple implementations available (FPGA, ASIC, etc.). The challenge is that an FPGA 

implementation is too slow and an ASIC would restrict it to a fixed function.  How can we get 

speed and also reusability/programmability from our accelerator solution?  To get both flexibility 

and performance, we implemented SILLA using Recoding Engine as a reprogrammable FSM 

accelerator.  In doing so, we achieve a 53x speedup over GPU implementations of banded SW. 

 

8.2 Implementation and Experimental Conditions for FFT Acceleration 

We used the SPIRAL hardware generator (https://www.spiral.net/hardware.html) to create a 

custom FFT hardware accelerator circuit block.  To compute power and area, we ran the FFT 

circuit through the Mentor Graphics Design Synthesis to route the circuit for a 14nm ASIC target 

as shown in Figure [FFThw].  This provides us with accurate area, power consumption, and timing 

estimates for the circuit.  The throughput of the circuit can be computed using an analytic model, 

but we also routed the full circuit design combined with a RISC-V core onto an FPGA emulation 

platform to serve as a full cycle accurate model of the chip design.  For a baseline comparison, we 

measured the performance of the optimized FFTW library on Intel Xeon Phi (KNL) and an 

NVIDIA V100 GPU.  The benchmark used was the stock HPCC FFT benchmark, which is a very 

large 1D FFT using 32-bit floating point complex operands. 

https://www.spiral.net/hardware.html
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Figure [FFThw]: Chip-layout at 14nm using Mentor Design Synthesis Flow.  Shows 2x improved 

density improvement over an analytic model, but 2x slower clock.  Floating point multiplier is the 

critical path around 1900 ps leading to 500 MHz design for standard cell based synthesis.  An 

improved StdCell library (better than OpenSDK) could result in further improvement. 

 

8.3 Results for FFT accelerator 

The benchmark used was HPC-Challenge 32bit complex out-of-place transform with CUFFT for 

the V100 and FFTW for Intel. The FFT accelerator hardware was generated by SPIRAL [SPIRAL] 

with one targeting just enough hardware to saturate a 100GB/s memory interface (much like the 

Intel server chips) and 1TB/s memory interface bandwidth limit, which can keep more accelerator 

hardware utilized. The performance results shown in Figure [FFTperf] show that the performance 

delivered is not substantially higher than that of the NVIDIA GPU as the performance is memory 

subsystem limited, but the performance per area (area efficiency) and performance per watt 

(energy efficiency) is a full one to two orders of magnitude better than for the GPU and three 

orders of magnitude better than the equivalent of the x86 with AVX512 (note the logarithmic scale 

for the horizontal axis).   

 

We also investigated packaging the accelerator as an ISA extension which enables tighter coupling 

of the programmable nature of the processor core with the fixed-function acceleration of FFTs, 

and the emulated RTL on our FPGA platform performed nearly 10x faster than the native x86 host 

processor for FFT-heavy image processing tasks despite running at a 10x slower clock rate.  Next 

steps will be to study other common numerical kernels such as BLAS for fixed function 

accelerators. 

 

 

Figure [FFTperf] Performance of the FFT benchmarks (on the left).  Performance/area and 

performance/watt for the fixed function hardware (SPIRAL generated) FFT is shown on the right. 
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8.4 Implementation and Experimental Conditions for Bioinformatics Accelerator 

Acceleration of the banded Smith-Waterman sequence matching involves efficient representation 

of the Levenshtein automata and hardware architecture supporting this implementation. To enable 

high throughput acceleration of computation involved in the Smith-Waterman algorithm, we 

introduce the first method of using the SILLA automaton-based acceleration using a Recoding 

Engine as shown in Figure [P38-SW]. This SILLA (String Independent Local Levenshtein 

Automata) automaton was introduced in [GenAx] and was used as one of the components of the 

GenAx architecture. We extend this implementation to be realized using the instructions and 

intrinsics available in our Recoding Engine architecture framework. To do this we take two-prong 

approach of acceleration: first, by using the already available instructions from the Recoding 

engine and next by implementing a custom hardware accelerator. The performance improvement 

achieved by the custom accelerator called GenAx reported in the literature [GenAx] is 64x 

compared to the sequential cpu baseline. 

 

Figure [P38-SW]: Acceleration of the banded Smith-Waterman (SW) Algorithm with Recoding 

Engine and Custom Implementation.  

 

It enables 4058 Kreads/second sequence alignment throughput which is due to the efficient 

implementation of the automaton data-structure and the custom accelerator design using this data-

structure.  But, this style of acceleration lacks programmability and is expected to run as a 

standalone co-processing element. Integrating them into a programmable heterogeneous 

architecture will enable broader use of these accelerators to speed up genomics applications.  

 

8.5 Preliminary Results and Analysis for SILLA Bioinformatics Accelerator 

Before implementing the algorithm using the SILLA automaton, we did a scalability experiment 

to discover the achievable bandwidth limit for this type of accelerator. To do so, one of the authors 

of the LBNL Meraligner software, Marquita Ellis, evaluated the Smith-Waterman section of the 

software on Cori. Results are shown in Figure [Cori-Eval] which compares the results from Cori 

HPC system in LNBL, sequential cpu results of running SeqAn on Xeon, and scaled results from 

the SILLAx, the SILLA accelerator. As shown in the Figure [Cori-Eval], Meraligner on Cori 

empirically scales from 2.5 up to 12.6 million alignments/Second using 1 to 8 nodes. The SeqAn 

scaling trend is lower than Meraligner due to its sequential implementation. For Sillax, we scaled 
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the single node performance using the trend from Cori, and for 1 to 8 nodes, alignment from 56.6 

Million alignments/sec to 288.8 Million alignments/sec can be achieved. 

 

Finally in Figure [Perf-Pow] the expected performance and power results of our standalone 

implementation of the SILLA accelerator are shown. The comparison with the CPU, GPU, and 

GenAx accelerator is shown. We expect the performance and power of our implementation to be 

between the standalone GenAx accelerator and the GPU implementation. This is due to the 

overhead of using Recoding Engine’s intrinsics to implement the SILLA accelerator based Smith-

Waterman algorithm and custom accelerator implementation without using all the acceleration in 

GenAx which will impact the performance and power. Nevertheless, better power and 

performance results are predicted compared to the reported CPU and GPU implementations and 

close to the full custom GenAx accelerator implementation.  

 

                      

Figure [CoriRes]: Initial assessment results of Smith-Waterman alignment algorithm. Comparison 

is shown for the baseline (sequential implementation in Xeon (28 core)), the Smith-Waterman part 

of the Meraligner run on Cori, and accelerated alignment using the Sillax accelerator. Experiments 

on Cori with Meraligner are run by Marquita from LBNL.  
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8.6 Software for FFT and SILLA 

In both the case of the SILLA accelerator and for the FFT accelerator, the interfaces make use of 

existing API interfaces to existing software implementations of these respective functions. For 

example, the interface to the discrete accelerator can be hidden behind an FFTW API.   In the case 

of the SILLA accelerator personality for the sequence alignment matching, we had to create our 

own API interface to invoke the sequence matcher.  However, the interface invokes a software 

implementation of the SILLA FSM by default, and will invoke the Recoding Engine accelerated 

FSM if the personality is loaded using the Recoding Engine’s APIs as described in section 5.4 

(Recoding engine software).   

 

We also experimented with exposing the FFT interface as an ISA extension to the RISC-V 

instruction set architecture for much tighter integration.  The ISA extension, albeit more flexible, 

requires more extensive modifications to the compiler to add the FFT construct to the intermediate 

representation and to add hooks to emit the FFT assembly instructions. 
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9 Curation and Knowledge Transfer of Experiments, Results and Research 

Material 
9.1 Motivation 

The curation and dissemination of the experiments, results, and supporting research material is 

critical to ensuring that the knowledge developed in this project is readily transferable to enable 

follow-on projects.  To support this, the Open Curation for Computer Architecture Models 

http://spiral.net/hardware.html
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[OCCAM] tool suite has been selected to serve as the confluence for the research derived from 

each of the respective P38 teams.  

 

9.2 OCCAM Overview 

OCCAM is a community-driven active curation platform that allows its users to contribute and 

share their artifacts and experiments [OCCAM].  Developed by the University of Pittsburgh (Pitt), 

under the leadership of Professor Bruce Childers, OCCAM satisfies the research community’s 

need to preserve experiments, experimental data and results at every stage of the research process.  

OCCAM satisfies these requirements by offering long term preservation and reproducibility of 

software experiments, to include the model source code, build and run instructions, configuration 

parameters, and critical dependencies.  This data is preserved recursively and accessible with the 

same fidelity at all levels.   The OCCAM tool suite offers a user-friendly web-based interface, 

allowing researchers to access and conduct experiments, view resulting data, and review available 

supporting documentation.   Additionally, when using Sandia National Laboratories’ Structural 

Simulation Toolkit [SST] OCCAM offers a graphical interface to archived models, enabling 

researcher’s ability to connect (wire) models, configure and execute experiments and examine the 

results.  

 

9.3 OCCAM’s Application to P38 

ACS has initiated a preliminary discussion with Pitt to arrange for the activation of an OCCAM 

instance dedicated to P38 research.  Pitt has recommended the use of the Pittsburgh 

Supercomputing Center [PSC] as the site to host OCCAM and archive the P38 research materials.  

Based on discussions with Pitt, the PSC has the experience and resources needed to readily support 

the needs of P38 research teams.   

 

9.4 OCCAM Availability 

Based on conversations with Pitt and PSC it is anticipated that all of the necessary computer and 

software resources will be available for P38 use by December of 2019.  To ensure the availability 

of P38 materials, the hosting site will need to employ highly reliable computer systems and provide 

timely administration.   

 

9.5 OCCAM Training 

To support the use of the OCCAM platform, a hands-on training session for all of the P38 

researchers will be available.  It is anticipated that the training will be offered around the same 

time that the PSC activates the P38 OCCAM website.  Additionally, the possibility of on-line 

training, presented by Pitt professors, is under consideration.  Forums that have been suggested 

include a live-VTC and a recorded video option with availability in Dec 2019 / Jan 2020. 

 

9.6 References 

[OCCAM] L. Oliveira, D. Wilkinson, D. Mosse, B. Childers, Supporting Through Artifact 

Evaluation with OCCAM - http://rescue-hpc.org/_resources/20181111-occam_rescue-hpc-sc18-

workshop-paper.pdf 
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[DEMO] OCCAM Demonstrations: https://occam.cs.pitt.edu 

 

[SST] Sandia National Laboratories, Structural Simulation Toolkit: http://sst-simulator.org/ 

10 Conclusions 
The first phase of Project 38 has demonstrated significant potential benefits to USG-relevant 

applications. Six key proxy applications of interest and five key architectural features were 

analyzed and determined to provide improvements in areas ranging from performance, energy-

efficiency, throughput, or capacity from 40% to over 10x. Further integration efforts and studies 

are required to fully characterize the benefits realizable at a full-system scale. 

Significant progress has been made in identifying the design decisions, integration challenges, and 

software ecosystem support required to allow such architectural features to be successfully 

incorporated into future HPC designs. The lessons learned from this first phase of the project serve 

as starting points to help communicate USG needs, requirements, and desires to the larger 

community of vendors, system integrators, and academic researchers. 

Documentation of the work, to enable knowledge transfer and to support vendor engagements, is 

underway.  Initial vendor engagements have been identified; these will become ongoing in FY20. 

Project 38 has served as a catalyst for developing a deeper understanding of USG HPC interests 

across the NSA and DOE. It has increased interactions between researchers across the USG, helped 

reveal the unique requirements and challenges faced by each organization, and established a 

foundation upon which future engagements can build. 

11 Appendix A: Background Information 
In September 2016, ~60 HPC experts met to discuss/respond to the June 2016 announcement of 

China’s TaihuLight supercomputer.  The attendees reached the following consensus (a full report 

is available [DJM1]). 

● The HPC technology ecosystem is changing in ways that are less favorable to HPC 

● There are national security implications to this change 

● Leadership in innovative architectures is critical 

● Joint architectural explorations between NSA and DOE might be useful and interesting 

Approximately 40 DOE and NSA HPC experts met again at IDA/CCS-Bowie for a weeklong 

technical deep dive from September 25-29, 2017.  DOE and NSA held follow on meetings, 

telecons, and VTCs.  Key accomplishments from these activities are: 

● An improved understanding of key applications 

● Description of specialized architecture development process and specific examples 

● Discussion of possible architectures and applications of interest 

● Defining a value proposition for joint explorations 

https://occam.cs.pitt.edu/
https://occam.cs.pitt.edu/
http://sst-simulator.org/
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● Refinement of the exploration space and exploration process 

On April 12, 2018, ~25 DOE and NSA experts held an all-day meeting that identified a small, 

specific set of architectural ideas worth exploring, and developed initial work plans for exploring 

the ideas.  Improvements in data access are the initial focus, and the explorations have been 

generally limited to node level results.  This meeting represents the formal launch of Project 38.  

The near-term milestones for Project 38 are: 

2018 

Quantify the benefits of the explorations, primarily through modeling and simulation.                     

The benefit is determined by quantification of the performance improvement against a baseline of 

vendors’ technology roadmaps (business as usual). 

 

2019 

Complete the existing explorations by increasing understanding of the costs - adverse changes to 

programming models, application development, system SW stacks, etc.  Document the results to 

enable knowledge transfer and extend the initial explorations.  

 

2020 

Improve the fidelity of the cost-benefit analyses. 

Push the best ideas towards implementation, primarily through aggressive vendor engagements. 

Develop one system reference design of mutual interest. 

Project 38 explorations should accomplish the following: 

● Establish general boundaries of the risk/reward for purpose-built architectures of shared 

interest; 

● Quantify the improvement of purpose-built architectures for applications of interest; 

● Greatly increase the understanding by the DOE and NSA of architectural features that have 

value to both organizations; 

● Greatly increase the understanding by the DOE and NSA of the possibility of developing 

a shared architecture; 

● Increase the depth and the quality of the DOE and NSA technical working relationship; 

● Enable the DOE and NSA to communicate both shared and individual priorities in 

architectures and innovations to the vendor community and senior USG stakeholders. 

● Develop a capability for the DOE and NSA to individually or jointly explore innovations 

with the ability to quantify their value (for certain classes of applications) to their partner. 
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