
An Agenda for Concern-Oriented Software Engineering
Nicolas Lopez and André van der Hoek

Department of Informatics
University of California, Irvine

Irvine CA, 92627, USA

{nlopezgi,andre}@uci.edu

ABSTRACT
The principle of separation of concerns has certainly stood the test
of time in guiding the field of software engineering, leading to an
amazing variety of approaches available to programmers to actu-
ally separate and manage concerns in their software. In this paper,
we provide a novel perspective on these approaches, a perspective
that is guided by the observation that the underlying goal of any
approach should not be to always separate concerns, but instead to
minimize the impact of concern scattering and tangling. Reframed
as such, we survey and relate existing work, highlight fundamen-
tal limitations of the four canonical approaches to minimizing the
impact of concern scattering and tangling, and provide an agenda
for future work – at both the code level and beyond.

Categories and Subject Descriptors
D.2.3 [Software]: Software Engineering – Coding Tools and
Techniques. D.1.m [Software]: Programming Techniques –
modularization. D.2.7 [Software]: Software Engineering –
Distribution, Maintenance, and Enhancement – restructuring, and
reverse engineering

General Terms
Design, Languages.

Keywords
Software concerns, separation of concerns, modularization,
software maintenance and evolution, scattering and tangling

1. INTRODUCTION
Dijkstra in 1974 [9] proposed his principle of separation of con-
cerns, which has had a profound influence on the field, so much
so that it is now a standard practice in programming to leverage
the facilities of the programming language to modularize con-
cerns. Parnas’ work of course was equally important in achieving
this impact, as it was his early modularization ideas [20] that set
the tone for how one should go about separating concerns and that
also implicitly identified several requirements for programming
languages to support this practice.

While modularization has clearly been the predominant approach
to supporting separation of concerns (whether via traditional pro-
gramming language constructs, aspect orientation [15], or subject-
oriented programming [10], to name a few), other approaches
have emerged as well. Perhaps the most different approach is that
of concern modeling. Instead of embedding support for separating
concerns in the programming language, a separate model is main-
tained that describes and relates concerns, and indexes them to the
programming language. Such a model may be explicitly kept
(e.g., CME [11], ArchEvol [18]), or implicitly constructed with
the help of queries or heuristics (e.g., FEAT [21], Mylyn [13]).
One way to examine this body of work as it has emerged to date
is to treat each approach as a separate inroad into supporting a
concern-based view of software development. While to some
degree we do that in this paper, we also seek to establish a deeper
understanding, one that is based on the observation that separating
concerns is just a means to an end, rather than a goal in and of
itself. Dijkstra already hinted at this, noticing that a perfect sepa-
ration of concerns is impossible to achieve and highlighting that
the reason to separate them was to be able to understand each in
isolation as one deals with it [9].
We see two problems with this goal of understanding a concern in
isolation, however:

• One does not always want to deal with just one concern, as
much of the difficulty of concerns lies in dealing with them
when they represent related views. For instance, we may
want to know how, if we modify some security code, privacy
is affected. Here, it is crucial to know where both concerns
are addressed in the code.

• Given that a perfect separation is impossible to achieve, we
must begin to ask which concerns are worth separating and
why. The driver here, of course, is evolution: it should be
possible to make future changes with the least amount of
“hassle” given the concerns that those future changes ad-
dress.

The issue, thus, is not necessarily separating concerns. Rather, the
key objective is mitigating the long-term impact of scattering and
tangling of concerns to reduce the complexity of understanding,
maintaining, evolving, and reusing code. It may be perfectly fine
to leave some concerns scattered, and in some cases it is even
desirable to not spend the extra effort of refactoring, as that code
may never be visited again. Some other code, however, may need
to definitely be untangled and put into its own modules, since it is
likely the subject of significant future work. By the same token,
modularization is just one way in which the impact can be miti-
gated. In some cases, the decision may be made to use a concern
model instead for some of the code, as it is easier to construct and
use, and does not involve expansive refactoring.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.

217

With all these choices, concern-oriented software engineering in
effect becomes an optimization problem: which techniques should
be used when, so the long-term impact of concern scattering and
tangling is minimized? It is this optimization problem that drives
the research agenda that we define in the rest of the paper.

2. CONCERNS FRAMEWORK
The concept of a concern has been defined numerous times, with
a relatively broad variety of definitions emerging. We adopt a
definition authored at a recent workshop that highlights the dual
nature of a concern [22]: (1) a concern is a conceptual area of
interest or focus for a stakeholder of a software project, and (2) a
concern refers to the concrete manifestation of conceptual con-
cerns in software artifacts. Both perspectives are important. The
first stipulates that concerns can be broad in nature, and stem
from a variety of individuals with an interest in the system. The
second ties this interest to concrete lines of code in the system.
With this definition in mind, we now examine existing approaches
to mitigating the long-term impact of concern scattering and tan-
gling using the framework presented in Figure 1. The framework
identifies four canonical approaches by separating them along two
orthogonal dimensions: embedded versus overlaid and specified
versus derived.
The center circle represents the overarching goal we identified in
our discussion thus far, towards which all advances must work. In
order to do so, it clearly is necessary that concerns are represented
in one way or another. The first circle surrounding the core high-
lights that this can be done in one of two ways: (1) by embedding
the concern representation in the target language, or (2) by over-
laying a concern model that relates concerns and artifacts.
The second dimension, as represented by the next circle, identifies
the two alternative ways in which a concern representation can be
constructed: (1) concerns are explicitly specified by the devel-
oper, or (2) concerns are derived from the artifacts, ideally in an
automated or semi-automated way.
Combining these two dimensions, how concerns are represented
and how this representation is constructed, identifies four distinct
quadrants that group approaches with similar characteristics.

Modularization and composition (bottom left). Approaches in
this category require a developer to manually decide upon a par-

ticular modularization, with each module ideally representing one
concern. The idea is to physically separate concerns by leveraging
programming language constructs that hide information pertaining
to a concern, with tools supporting the composition of individual
modules into a system. This encompasses the classic approach of
classes and interfaces (composed with a compiler and linker), but
also more advanced approaches such as aspect orientation [15]
and subject oriented programming [10]. The assumption underly-
ing these approaches is that, to mitigate the impact of concern
scattering and tangling, the best solution is to attempt to avoid the
problem altogether, at least for some concerns, by physically
separating them.

Extensional concern modeling (top left). Approaches in this
category require a developer to, separately from the code, specify
one or more concern models that capture individual concerns and
their relations. This concern model is associated to the code via
explicit links between the concerns and the development artifacts,
sometimes at a coarse-grained level (e.g., entire artifacts), some-
times at a fine-grained level (e.g., individual lines of code or even
just sets of characters). With respect to mitigating the impact of
concern scattering and tangling, these approaches recognize that
such scattering and tangling is a fact of life, regardless of which
modularization is applied (the tyranny of dominant decomposition
[25]). The assumed best way to mitigate their impact is to be in-
clusive of all concerns and to always enable a precise trace to
where a concern is implemented in the code. The use of visualiza-
tion tools enables strong insights into actual scattering and tan-
gling in a code base.

Intensional concern modeling (top right). Approaches in this
category also have a concern model but evaluate concerns in a
different way. In an extensional concern model, a concern is
linked to its code once, after which it remains static unless it is
explicitly updated –the links are actively managed. In an inten-
sional concern model, where a concern resides in the code is dy-
namically determined; the links are not managed but derived.
Intensional modeling approaches identify the code that relates to
a concern through queries or heuristics that construct a temporary
concern model overlaying the code. Analyses of code artifacts
and changes, as well as developers’ historical interactions with
the development environment, enable (semi-)automatic derivation
of the relevant links. The hypothesis underlying these approaches
is that the best way to mitigate the impact of concern scattering
and tangling is to reduce the workload on the developer by not
requiring them to maintain the concerns themselves. They instead
are provided with ways of finding them when needed.

Mining and refactoring (bottom right). Approaches here paral-
lel intensional concern modeling in using (semi-)automated analy-
ses, but differ in their objective in seeking to derive an improved
modularization as compared to how a set of concerns presently is
embedded in the system. Some approaches mine for new con-
cerns, others seek to refactor the code to yet better separate con-
cerns from one another. The hypothesis underlying these kinds of
approaches is that concern scattering and tangling can be miti-
gated by continuously pushing for the “ideal” modularization with
each change that developers make to the system.

3. STRENGTHS AND WEAKNESSESS
Given the framework, one may ask which approach is better to
use in a given situation. In general, this is a difficult question to
answer, because we do not yet have the right depth of understand-

Figure 1. Concerns Framework.

218

ing in terms of the absolute and relative merits of each of the ca-
nonical approaches. As a first step towards building this under-
standing, Table 1 summarizes key strengths and weaknesses of
each.
Some tradeoffs are visible immediately. Modularization and com-
position approaches, for instance, provide for independent design
and implementation of concerns, effectively insulating developers
from one another so they can work in parallel. Moreover, the code
associated with a concern can be easily reused – if it was properly
modularized in the first place. This is in contrast to extensional
concern modeling, which does not have those benefits but allows
for the management of a broader range of concerns, and can more
effectively deal with making visible those concerns that are tan-
gled. Similar tradeoffs can be derived from the framework with
respect to other pairs of approaches.
Some of these weaknesses can be expected to be overcome in the
future with improved language and tool support. Others, however,
will not, as each quadrant has its own key fundamental limitation
inherent to its underlying approach. For modularization and com-
position, this limitation has been widely discussed in the literature
and is known as the tyranny of dominant decomposition [25]. In
shorthand, this limitation states that it is impossible to modularize
every concern, and scattering and tangling inevitably arise.
Similar fundamental limitations exist for the other quadrants. Any
extensional approach faces the human inability to deal with scale,
as it cannot be expected that developers can precisely maintain a
complex mapping from concerns to code with each change they
make. In the case of intensional modeling, the limitation is that
only humans can interpret what a given concern means; auto-
mated queries and heuristics can only approximate such meaning.
Finally, for mining and refactoring, the barrier is that those refac-
torings that ultimately would yield the greatest benefit in a given
situation are one of a kind, and thereby unspecifiable as a generic
program.

4. RESEARCH AGENDA
Given the strengths and weaknesses we presented in Table 1, and
given the fundamental limitations identified in the previous sec-
tion, it should be clear that none of the approaches is best under
all circumstances. Worse yet, each will exhibit its weaknesses
whenever it is applied; programmers will have to be aware of and
deal with those weaknesses as part and parcel of their work. Fur-
ther, with the ever-increasing scale and complexity of the systems
we build, the weaknesses and limitations will be more obvious.
This is not to say that no progress has been made, or can be made
again. Rather, we believe our framework helps identify a number
of different ways in which the field can move forward and work
towards the goal of reducing the impact of concern scattering and
tangling.

Extending approaches within each quadrant. The most obvious
step forward is to continue work within each quadrant, and indeed
this work is happening and continues to happen. New modulariza-
tion languages are being invented regularly, new extensional
modeling tools are emerging, intensional modeling is still only in
its infancy, and more advanced mining algorithms and refactoring
heuristics continue to be developed. Particularly approaches in the
top half of the framework have a lot of room for improvement,
simply because they are still relatively new. We mention Ar-
chEvol [18], which takes an incremental heuristics-based ap-

proach to updating concern links, and Mylyn [13], which attempts
to actively provide a focused set of artifacts for a given task by
mining past actions and artifacts, as particularly promising in this
regard. The weaknesses listed in Table 1 should help guide the
field’s research efforts; for instance finding more global refactor-
ings, reducing the entry barrier to new modularization languages,
or improving the precision and recall of intensional concern mod-
eling approaches.

Crossing quadrant boundaries. A more complex step forward,
and one that to date has been attempted only in a limited fashion,
is to build connections across the quadrants, so that selected com-
binations of approaches can be applied to a software system. First,
this might simply involve being able to switch which approach to
use for a certain concern. Modularization may be favored early on
for some concern, but as the relevance of that concern decreases,
it may be beneficial to move it to a concern model instead, or
even to not track it at all since its potential long-term impact
might be less than the effort to convert and track it. Another ex-
ample might be a concern that is first found using an intensional
approach, then explicitly tracked in a concern model, and eventu-
ally modularized in the source code. These kinds of transitions
should be supported flexibly. Hybrid approaches can even be
imagined, where a given concern is modularized at first, but as it
slowly scatters, a concern model is used to track where it scatters.
Second, different approaches can benefit from one another di-
rectly as well. Imagine an intensional query or heuristic that is
particularly strong at identifying certain kinds of concerns. If the
preferred approach is to use a concern model, however, newly
found concerns using the query or heuristic must be placed in the
concern model and evolved using the mechanisms provided by

Table 1. Strenghts (+) and Weaknesses (-).

 Modularization & Composition
+ Independent design and maintenance; effective reuse

-

A modularization can become stale when new and changing
concerns demand different structures; scale of concerns can
lead to very complex modularizations; advanced languages
have steep learning curves

 Extensional Concern Modeling

+
Arbitrary types of concerns can be modeled; granularity is
very flexible; scattered and tangled concerns easily identi-
fied

-

Requires high buy-in to consciously track all concerns,
identify new concerns as they emerge, and update concerns
as programming continues; tool support to update concerns
is immature, leaving traceability largely as a manual task

 Intensional Concern Modeling

+
Very low barrier to use as it can be applied post-hoc; many
different analyses and heuristics can be applied; other arti-
facts than code can be used in identifying concerns

- Typically supports only one concern at a time; imprecise
results, requiring further human filtering

 Mining and Refactoring

+
Can gradually improve scattering and tangling; very low
barrier to use as it can be applied post-hoc; many different
analyses and heuristics can be applied

-
Most mining research only identifies candidate concerns, it
does not support restructuring the code; refactoring tends to
make local improvements, not global

219

generic tools surrounding this concern model. It would be much
better to build such tools in an extensible manner, allowing the
original query or heuristic to be plugged in and matched to certain
concerns, to improve the precision and recall of tracking the evo-
lution of the concern. As another example, imagine applying
refactoring techniques to a concern model rather than code, in an
attempt to find a better “modularization” of the conceptual con-
cerns that govern the code.

Good science. Underpinning any and all advances should be good
science, that is, the use of informed research methods and conse-
quential evaluations. We should understand how concerns really
evolve, how they become scattered and tangled, and when scatter-
ing and tangling becomes problematic. Is there a predictable life
cycle of some sort for concerns in which they come about, grow,
and then become stable; or is the situation more erratic? Are
there certain classes of concern evolution patterns that we can
find? A small number of researchers are beginning to look into
these kinds of questions, but clearly much more empirically
grounded work is needed.
From such studies, we would expect grand challenges and bench-
marks to be developed that can be used by any new approach or
combination of approaches to evaluate its success in reducing the
impact of concern scattering and tangling, both in absolute terms
with respect to the benchmarks and challenges and in relative
terms as compared to other proposed approaches. This means that
we must find ways of quantifying this impact, too, which will be
difficult as the ultimate impact of scattering and tangling can only
be directly measured in the complexity of debugging, maintaining
and evolving a system over a long time.

Beyond code. Our discussion thus far has exclusively focused on
code, but other kinds of artifacts are equally subject to the notions
of concerns, scattering, and tangling, and the desire to minimize
the impact of concern scattering and tangling. Figure 2 presents
our concern framework, but this time surveying approaches that
are capable of addressing artifacts other than code. We note that
the top half is more sparsely populated, but that work certainly is
beginning to fill out the four canonical approaches.
The research agenda here is analogous to that of code: continue to
work within each quadrant, build bridges among quadrants, and in

so doing use good science. Two additional key research questions
arise, however.
First, to what degree are the four canonical approaches applicable
to other kinds of artifacts, and do the strengths, weaknesses, and
fundamental limitations stay the same? On the one hand, one can
argue “yes”, as the only assumptions we made in formulating our
framework are that there are representations for artifacts and con-
cerns and that the two must be connected somehow (using any of
the four canonical approaches). On the other hand, some represen-
tations are more difficult to deal with. How might one mine,
refactor, and maintain concerns in a requirements document, or
formulate an intensional query over an architecture specification
involving multiple views? We believe the answer, therefore, will
likely be much more nuanced than initially assumed, and involve
careful study of the approaches and the underlying representa-
tions.
Second, concerns are certainly not compartmentalized to individ-
ual life cycle phases; the impact of scattering and tangling must
be addressed in full, across the development life cycle. This re-
quires an ability for concerns to persist across the life cycle, but it
would be naïve to assume that the same set of concerns simply
overlays the development activities in each phase. Rather, their
nature will change, as early high-level concerns break apart into
large sets of detailed concerns regarding the code, or, vice-versa,
certain low-level concerns aggregate. Some work has begun to
address these issues, with CME [11] and SOD [8] offering prom-
ising ideas.

5. CONCLUSIONS
The principle of separation of concerns has long guided the field
of software engineering. This paper is similarly influenced by its
underlying idea, but provides a shift in the foundation upon which
future work can build. Particularly, we believe the goal should not
be to always separate, but rather it should be to minimize the im-
pact of scattering and tangling – the phenomena that arise since a
perfect separation of concerns simply cannot be achieved.
Our concerns framework is built upon this observation; it allows
us to compare a number of approaches that to date often have
been considered separate. For concern-based software engineering
to succeed, these approaches must be brought together, not just in
addressing concerns in code, but also in taking a concern-centric
view of the entire software life cycle.

6. REFERENCES
[1] Bass, L., P. Clements, et al. 2003. Software Architecture in

Practice, Addison-Wesley Longman Publishing Co., Inc.
[2] Baldwin, C. Y. and K. B. Clark. 1999. Design Rules: The

Power of Modularity Volume 1. MIT Press.
[3] Baniassad, E., P. C. Clements, et al. 2006. Discovering Early

Aspects. IEEE Software: 23(1): 61-70.
[4] Booch, G., J. Rumbaugh, et al. 1999. The Unified Modeling

Language user guide. Addison Wesley Longman Publishing
Co., Inc.

[5] Booch, G. 1986. Object-oriented development. IEEE Trans.
Softw. Eng. 12(2): 211-221.

Figure 2. Concerns Framework Applied Beyond Code.

220

[6] Brichau, J., M. Glandrup, et al. 2002. Advanced Separation
of Concerns. Proceedings of the Workshops on Object-
Oriented Technology, Springer-Verlag: 107-130.

[7] Chitchyan, R., M. Pinto, et al. 2009. Report on early aspects
at ICSE 2009: workshop on aspect-oriented requirements
engineering and architecture design. SIGSOFT Softw. Eng.
Notes: 34(5): 30-35.

[8] Clarke, S., W. Harrison, et al. 1999. Subject-oriented design:
towards improved alignment of requirements, design, and
code. 14th ACM SIGPLAN conference on Object-Oriented
Programming, Systems, Languages, and Applications, 325-
339.

[9] Dijkstra, E. W. 1974. EWD 447: On the role of scientific
thought. Selected Writings on Computing: A Personal Per-
spective, 60-66.

[10] Harrison, W. and H. Ossher. 1993. Subject-oriented pro-
gramming: a critique of pure objects. SIGPLAN Notes: 28-
10, 411-428.

[11] Harrison, W., H. Ossher, et al. 2005. Concern modeling in
the concern manipulation environment. 2005 Workshop on
Modeling and Analysis of Concerns in Software, 1-5.

[12] Kellens, A., K. Mens, et al. (2007). A survey of automated
code-level aspect mining techniques. Transactions on aspect-
oriented software development IV, Springer-Verlag: 143-
162.

[13] Kersten, M. and G. C. Murphy. 2006. Using task context to
improve programmer productivity. 14th ACM SIGSOFT in-
ternational symposium on Foundations of Software Engi-
neering, 1-11.

[14] Kersten, M. and G. C. Murphy. 2005. Mylar: a degree-of-
interest model for IDEs. Proceedings of the 4th international
conference on Aspect-oriented software development. Chi-
cago, Illinois, ACM: 159-168.

[15] Kiczales, G., J. Lamping, et al. 1997. Aspect-oriented pro-
gramming. 11th European Conference Object-Oriented Pro-
gramming, 220-242.

[16] Kruchten, P. 1995. The 4+1 View Model of Architecture.
IEEE Software: 12(6): 42-50.

[17] Liu, J., R. R. Lutz, et al. 2005. Mapping concern space to
software architecture: a connector-based approach. SIGSOFT
Softw. Eng. Notes: 30(4): 1-5.

[18] Nistor, E. C. and A. van der Hoek 2009. Explicit Concern-
Driven Development with ArchEvol. Automated Software
Engineering (ASE 09), 185-196

[19] Ossher, H. and Tarr, P. Multi-dimensional separation of con-
cerns and the hyperspace approach. 2001. In Proceedings of
the Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development.
Kluwer.

[20] Parnas, D. L. 1972. On the criteria to be used in decompos-
ing systems into modules. Communications of the ACM: 15-
12, 1053-1058.

[21] Robillard, M. P. and G. C. Murphy. 2002. Concern graphs:
finding and describing concerns using structural program de-
pendencies. 24th International Conference on Software En-
gineering, 406-416.

[22] Robillard, M. P. 2005. Workshop on the Modeling and
Analysis of Concerns in Software. SIGSOFT Software Engi-
neering Notes: 30-4, 1-3.

[23] Sampaio, A. and A. Rashid. 2008. Mining early aspects from
requirements with ea-miner. Companion of the 30th interna-
tional conference on Software engineering. Leipzig, Ger-
many, ACM: 911-912.

[24] Stanley M. Sutton, J. and I. Rouvellou. 2002. Modeling of
software concerns in Cosmos. Proceedings of the 1st inter-
national conference on Aspect-oriented software develop-
ment. Enschede, The Netherlands, ACM: 127-133.

[25] Tarr, P., H. Ossher, et al. 1999. N degrees of separation:
multi-dimensional separation of concerns. 21st International
Conference on Software Engineering, 107-119.

[26] Tekinerdogan, B., F. Scholten, et al. 2009. Concern-oriented
analysis and refactoring of software architectures using de-
pendency structure matrices. Proceedings of the 15th work-
shop on Early aspects. Charlottesville, Virginia, USA, ACM:
13-18. Treude, C. and M.-A. Storey (2009).

[27] ConcernLines: A timeline view of co-occurring concerns.
Proceedings of the 31st International Conference on Soft-
ware Engineering, IEEE Computer Society: 575-578.

[28] Wadler, P. 1992. The essence of functional programming.
Proceedings of the 19th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. Albuquerque, New
Mexico, United States, ACM: 1-14.

221

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

