
Software for Everyone by Everyone

Tevfik Bultan
Computer Science Department
University of California

Santa Barbara, CA 93106, USA
bultan@cs.ucsb.edu

ABSTRACT

Given the dizzying pace of change in computer science, try-
ing to look too far into the future of software engineering is
hard. However, it might be possible to predict the future
of software for the next decade based on the current trends.
And based on the predictions on future of software, it might
be possible to speculate about the future of software engi-
neering. I try to do such a prediction in this position paper.
I predict that the future of software will be applications that
will be accessible everywhere, such as web applications and
mobile applications. I also predict that increasingly more
applications will be developed by non-computer-scientists.
The challenges and the opportunities for software engineer-
ing research will be in providing tools and techniques that
will enable non-programmers to become programmers for
everywhere-accessible-software.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Modules and Interfaces; D.2.4 [Software Engi-

neering]: Software/Program Verification—Model Checking ;
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—web-based services

General Terms

Design, verification, human factors

Keywords

Web-based applications, mobile applications, end-user pro-
gramming, model-driven development, modularity, automated
verification

1. INTRODUCTION
Let me state the obvious first. The future of software en-

gineering will be tied to the future of software. So, the first
question to answer is what will be the future of software?

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

What type of software will software developers write in the
future? Second question has to be: Who will be program-
ming in the future? What skills, background, knowledge
will the future programmers have? The answers to these
questions should guide the software engineering techniques
of the future. Based on the future of software and the future
programmer, we can try to predict the future software engi-
neering challenges. And, based on these challenges we can
make predictions about the future of software engineering.

2. FUTURE SOFTWARE
I suggest the following equation for characterizing the fu-

ture of software in the next decade:

future software = cloud computing×(web apps+mobile apps)

Although the above equation may seem like a random com-
bination of arithmetic symbols and buzzwords, what I mean
by it is the following: In the next decade, the majority of the
developed software will be either web applications or mobile
applications. Cloud computing will be a multiplying factor
in increasing the effectiveness, efficiency and availability of
these applications, bringing an end to the era of standalone
desktop applications that has dominated the software indus-
try since the introduction of the personal computer.

Let’s make a simple comparison between a desktop appli-
cation and a web application. A typical desktop application
runs on a single machine and it does not need a network
connection to run. It reads and stores its data locally on the
machine it runs on. In contrast, a web application runs on
a server over the network. It is accessed via internet by a
client machine running a browser. A typical web application
stores its data in a backend database and stores a minimal
amount of data (if any) on the client side.

It should be clear from this simple description that writ-
ing a web application is more challenging than writing a
standalone desktop application. A web application is a dis-
tributed system that involves interaction among multiple
components running on multiple computers (the client ma-
chine, the web server, the backend database). The complex-
ity of writing such an application should be greater than
writing a standalone application that stores and accesses
data locally. However, the advantages of web applications
compensate for the challenges they create, resulting in a
continuing shift towards them in the software industry.

What are the advantages of web applications? A web
application is accessible from any machine with an inter-
net connection and a browser. Storing the data in a back-
end database saves the users the hassle of copying files from

69

one machine to another machine. When combined with the
cloud computing platforms, web applications provide reli-
able, efficient and scalable access to data from anywhere in
the world. Moreover, the users do not have to deal with
installation, configuration management, software upgrades
and security patches. Software-as-service paradigm enables
the developers to seamlessly upgrade and modify the appli-
cations without bothering the users.

Software-as-service paradigm becomes even more effective
when an application is not only accessible from a desktop
computer but also from a smartphone. Increasing use of
smartphones such as iPhone and Android phones means that
nowadays users have network access even without having ac-
cess to a computer. Hence, a software that is accessible over
the network becomes even more valuable. Although web ap-
plications must run on any browser on any computer (since
a typical user uses multiple computers), mobile applications
typically have customized front-ends (since a typical user
uses a single smartphone and since small screens of mobile
devices make browser based interfaces hard to navigate).
However, these mobile applications with customized front-
ends can still access a server over the network and access
non-local data.

I predict that in the future most software applications will
be accessible through the internet and most applications will
be accessible both from a computer and a smartphone. Most
applications will use the three-tier architecture [20] consist-
ing of: 1) A client: This is the presentation tier that is
responsible for the user interface. It sends user requests to
the logic tier and presents the responses back to the user.
2) A server: This is the logic tier that serves the requests
from the client by interacting with the data tier, and 3) A
backend datastore: This is the data tier that stores the data
and interacts with the logic tier to serve the user requests.
The client will either be a browser running on a computer
or a mobile application running on a smartphone. The logic
and the data tiers for most applications will be hosted in a
compute-cloud. Since I could not find a better term, I will
call these everywhere-accessible-software-applications every-
ware applications.

3. FUTURE PROGRAMMERS
The reason Apple can claim that “there is an app for

anything” is not because Apple is developing iPhone ap-
plications for everything. The availability of thousands of
iPhone applications at the Apple App Store is due to the
fact that Apple provides the iPhone software development
kit (SDK) [1] to anyone interested in developing an iPhone
application and helps them in marketing their software at
the Apple App Store. Android SDK and Android Market [9]
do the same for mobile applications for the Android plat-
form. There are thousands of developers who are writing
software applications for these platforms since barrier to en-
try to these software markets is very low.

A similar trend also holds for social networking applica-
tions targeting the Facebook social network. Software devel-
opers can write Facebook applications based on the publicly
provided Facebook API [7] and their application would be
accessible to Facebook users.

At the same time, it is becoming easier to write and
launch web applications due to availability of cloud com-
puting technologies. A web application developer does not
have to worry about where to store a web server, how to

maintain it, how to handle high volume traffic, etc. Cloud
computing platforms provide servers that can be allocated,
used and maintained easily. For example, Google App En-
gine [10] enables software developers to write and run web
applications on Google’s infrastructure.

The low barrier to entry for writing everyware applica-
tions will encourage an increasing number of people to try
to develop their own applications. It is likely that a sub-
stantial number of these people will try to implement the
applications based on their ideas themselves even if they do
not have a computer science background.

Combination of these factors will encourage many
non-programmers to become programmers. And, eventually
such programmers will significantly outnumber programmers
with a computer science background. In fact this is already
true [23] if one considers end-user programming for spread-
sheet systems and databases. Everyware application devel-
opment will just accelerate the rate and level of end-user
programming, increasing the need for software engineering
for end-user programming [3].

Let me digress a little, I do not think it is unreasonable
to predict that everyone will be a programmer in the fu-
ture. Programming computers should be a natural activity
for humans since we are naturally equipped with comput-
ing machines called brains. However, unlike many fields of
knowledge, education in computing is mainly provided at
the college level. The lack of education of basic computing
concepts in K-12 education is probably an anomaly due to
the youth of computing field. In the long term, one can rea-
sonably expect that every high school graduate will know
basic concepts of computing and will be literate in com-
puter programming. However, even before this long term
transition, I expect that we will see a continuous increase in
programming by non-computer-scientists.

4. FUTURE CHALLENGES
The two trends I mentioned above, increasing develop-

ment of everyware applications with increasingly less expe-
rienced developers, will amplify a large stumbling-block that
is faced by software developers today: Everyware applica-
tions are not dependable. For example, web applications are
known to consistently mishandle unexpected user actions
caused by unanticipated use of a browser’s back-button or
multiple browser windows [13]. Web applications are also
notorious for security vulnerabilities that can be exploited
by malicious users [19]. Given their increasing importance
and ubiquity, the lack of dependability in everyware applica-
tions will be the most significant challenge faced by software
engineering researchers in the future. Below, I will elaborate
on several features of everyware applications that make es-
tablishing their dependability extremely challenging.

Security.
Since they are accessible from everywhere, security of ev-

eryware applications is extremely important. Ease of access
is an advantage when it is considered from the perspective
of the legitimate user. However, it also means that every-
ware applications can be targeted by malicious users from
all around the world. Even today web applications are used
for mission-critical tasks and frequently handle sensitive user
data. In the near future, web applications will play a sig-
nificant role in improving the efficiency of national infras-
tructures in many critical areas such as healthcare [12], na-

70

tional security, and the power grid [11]. Hence, security is
an extremely important concern for these applications. If
increasingly inexperienced programmers develop everyware
applications in the future, then we can expect the security
vulnerabilities to become even more significant in the future.

Interaction.
Everyware applications involve many types of interactions.

As I mentioned above, a typical web application is imple-
mented using a three-tier architecture, where the applica-
tion consists of (a) client-side code that executes at the user
machine through the browser, (b) server-side code that ex-
ecutes at the server machine and handles the user requests,
and (c) a backend database server that stores the persistent
data. Moreover, each of these tiers consists of a system stack
made up of layers of abstractions (in hardware and software)
that are built on top of each other. They include the system
hardware, operating system, virtual machines and runtime
systems, browsers, database engines, and application com-
ponents. There are multiple interactions among the tiers
and the components within the tiers, and multiple inter-
actions between different layers of abstractions on the sys-
tem stack. Understanding and managing these interactions
presents a significant challenge to any programmer.

Diversity.
Everyware applications will be developed using a diverse

set of languages and technologies. For example, each tier
of a three-tier web application can contain one or more lan-
guages including Java, Perl, PHP, Python and Ruby on the
server side, HTML, XML, and JavaScript at the client side,
and SQL and XQuery on the backend database (which it-
self is typically implemented in Java or C++). Moreover,
it is common to have interactions among different applica-
tions written using different development frameworks. This
diversity is not a transitional state that will eventually con-
verge to a single dominant language. Diversity is an essential
feature of everyware applications that is likely to increase
in the future given the benefits of different languages and
frameworks for different uses, and the increasing diversity
in backgrounds and preferences of software developers. In-
creasing use of mobile applications will add to this diversity
even more.

Changeability.
Everyware applications are updated frequently since the

code resides on the server side and can be updated without
user participation or knowledge. This is a very convenient
feature for application developers. When a bug is found and
fixed, the fix can be immediately uploaded to the server and
every user who uses the application after that point will use
the new version of the software. In fact the use of frequent,
incremental updates is now ingrained in the software pro-
cess models used by the web application developers. The
agile processes [2, 4] that have been widely adopted for web
application development encourage frequent and incremen-
tal updates. Hence, dependability of everyware applications
must be investigated assuming frequent updates and many
versions.

5. FUTUREOF SOFTWAREENGINEERING
In this section, I would like to speculate on future research

directions for software engineering for addressing the chal-
lenges I discussed earlier.

Models.
Model driven software development has been investigated

in the software engineering community for quite a while [18].
In the web application development domain, WebML pro-
vides a good example for model driven development [5]. In
the future, I expect that the model driven development will
become the mainstream approach used in software engineer-
ing research. Model driven development will be extended to
model driven programming where the model is embedded in
the code and becomes the code itself.

Model driven development will provide two important ben-
efits: 1) Models will enable analysis to improve dependabil-
ity, 2) Models will help inexperienced programmers to spec-
ify the behavior at a higher level of abstraction, minimizing
the errors that are due to misunderstanding and misuse of
low level language primitives.

Eventually, model based development may become a pro-
gramming approach that is accessible to everyone, mirroring
the success of languages such as Scratch [21] for introducing
children to programming. In the long term, computer sci-
entists will need to figure out how to teach basic computing
and programming skills to everyone. Software engineering
research can and should take a leading role in this area.

Automation.
I predict that automation will become increasingly im-

portant for software engineering. Automation will be essen-
tial in many contexts such as automated code generation
from high level models, automated testing and verification,
automated debugging, etc. Automation is crucial for ac-
commodating developers without much programming expe-
rience. There may be tasks that cannot be automated, such
as identifying the requirements for an application, designing
the data model or the navigation flow of a web application.
However, many tasks, such as mapping the navigation steps
to scripts in a scripting language might be automated for
many applications. The interesting research question is sep-
arating automatable tasks from the ones that require user
involvement.

Modularity.
Given the complexity of everyware applications, it is es-

sential to have modularity in design and development. For
example, in a typical web application, a user interacts with
a sequence of forms. Each form has an associated server-side
script, usually written in a dynamic scripting language such
as PHP, Python, or Ruby. While serving the user request,
a script can generate queries for the backend database in
a query language such as SQL. When it completes serving
the request, the script generates an HTML page to be sent
back to the user. Moreover, on the client side there could be
JavaScript code executing and interacting with the server
side scripts. It is not feasible to develop an application with
such a set of complex interactions without using some kind
of modularity.

Most web applications use a script-oriented programming
style. Building a large application as a collection of scripts
is difficult. In recent years, an increasing number of web
applications are being developed based on the Model-View-
Controller (MVC) design pattern [16, 8], using frameworks

71

such as Zend for PHP [25], Django for Python [6], Spring for
J2EE [24], and Ruby on Rails [22]. The MVC design pattern
brings structure to the collection of scripts that constitutes a
web application by separating the parts that are responsible
for the control flow logic (the controllers), the business logic
and the data model (the model) and the user interface logic
(the views). Controllers consist of actions (i.e., scripts) that
process the incoming requests by querying and modifying
the data model. When the processing is done, the next page
is rendered using the next view.

The main advantage of using MVC-frameworks is modu-
larity of the architecture. Properties related to navigation
are handled mainly by the controllers, and properties related
to the data are handled by the model, and the user interface
is handled by the views. In addition to making software de-
velopment easier, this separation of concerns also presents
an opportunity for effective automated verification and anal-
ysis. The research question is: How can modularity at the
design level be better integrated with the verification tech-
niques that depend on it?

Verification.
Both concerns about security of everyware applications

and increasing programming by inexperienced programmers
will make automated verification and analysis crucial areas
for future of software engineering.

A key part of effective verification is the ability to ex-
ploit the modular structure of the software. If a software
developer divides a software system to modules without re-
stricting the possible interactions between them, this type
of modularity will not be useful during verification since a
sound verification tool has to consider all possible interac-
tions. Actually, while developing a module, a software de-
veloper makes assumptions about the behaviors of the other
modules. The problem is, these assumptions may not be
expressed in any part of the code because 1) it takes sig-
nificant effort to specify such assumptions precisely, 2) pro-
gramming languages may not support specification of such
assumptions.

I believe that the key to solving this problem will be 1)
providing effective tools and techniques for specification and
analysis of interfaces, 2) isolating the behavior of interest
based on these interface specifications in order to achieve
scalable modular verification that exploits the inherent mod-
ularity in everyware applications. These interface specifica-
tions will be tightly integrated with the models used for
characterizing the behavior of the application.

For example, with an appropriate modeling language and
appropriate interface specifications, it might be possible to
automatically extract a data model from a web application
and analyze it. One can use bounded verification tech-
niques to check properties of the data model within a certain
bound [15]. It might also be possible to extract a navigation
model from a web application [17] and analyze its properties
using state space exploration techniques [14]. However, an
important goal has to be integration of the verification task
to the software development process. Verification should not
be a separate step that requires reverse engineering of the
artifacts produced during development. It should be part of
the design process to eliminate the errors as early as possi-
ble.

6. CONCLUSIONS
Future software applications will be accessible from browsers

and smartphones. They will reside on the cloud and will
function as globally accessible services. Low barrier to entry
to application development will create many software devel-
opers without computer science background. The future of
software engineering research must address the challenges
that will be created in such a future. I believe that model-
driven-programming combined with automation, modularity
and verification techniques can address those challenges.

Although there are notable exceptions, so far in its 40-plus
years of history, software engineering research has mostly
been either reactionary (for example reacting to develop-
ments in other areas such as programming languages, op-
erating systems and networking) or too academic and hard
to adopt in practice (for example a lot of the research on
formal methods). The future of software provides a unique
opportunity for the software engineering research to take
a leadership role in the field of computer science. Facili-
tating the massive amount of programming for the every-
ware applications of the future by inexperienced program-
mers will require contributions from all areas of software
engineering research, including research on software design,
modeling and analysis, verification, testing and debugging,
formal methods and empirical studies. The future of soft-
ware engineering will be exciting.

Acknowledgments. I would like to thank Chandra Krintz,
Ben Hardekopf and Timothy Sherwood for their input on
the challenges in building Web applications, and I would
like to thank anonymous reviewers for identifying some of
the related work.

7. REFERENCES

[1] Apple. iphone software development kit (sdk).
http://developer.apple.com/iphone/index.action.

[2] K. Beck. Embracing change with extreme
programming. IEEE Computer, 32(10):70–77, 1999.

[3] M. M. Burnett. What is end-user software engineering
and why does it matter? In 2nd International
Symposium on End-User Development, pages 15–28,
2009.

[4] by Ken Schwaber and M. Beedle. Agile Software
Development with Scrum. Prentice Hall, 2001.

[5] S. Ceri, P. Fraternali, and A. Bongio. Web modeling
language (webml): a modeling language for designing
web sites. Computer Networks, 33(1-6):137–157, 2000.

[6] Django framework. http://www.djangoproject.com/.

[7] Facebook. Facebook apis.
http://developers.facebook.com/.

[8] E. Gamma, R. Helm, R. E. Johnson, and J. M.
Vlissides. Design patterns: Abstraction and reuse of
object-oriented design. In Proceedings of the 7th
European Conference on Object-Oriented
Programming (ECOOP 93), pages 406–431, 1993.

[9] Google. Android. http://www.android.com/.

[10] Google. Google app engine.
http://code.google.com/appengine/.

[11] Google powermeter.
http://www.google.org/powermeter/.

[12] Google health. http://health.google.com/.

72

[13] P. T. Graunke, R. B. Findler, S. Krishnamurthi, and
M. Felleisen. Modeling web interactions. In
Proceedings of the 12th European Symposium on
Programming (ESOP 03), pages 238–252, 2003.

[14] G. J. Holzmann. The model checker SPIN. IEEE
Transactions on Software Eng., 23(5):279–295, May
1997.

[15] D. Jackson. Alloy: a lightweight object modelling
notation. ACM Trans. Softw. Eng. Methodol.,
11(2):256–290, 2002.

[16] G. E. Krasner and S. T. Pope. A cookbook for using
the model-view controller user interface paradigm in
smalltalk-80. Journal of Object-Oriented
Programming, 1(3):26–49, 1988.

[17] A. Kubo, H. Washizaki, and Y. Fukazawa. Automatic
extraction and verification of page transitions in a web
application. In Proceedings of the 14th Asia-Pacific
Software Engineering Conference (APSEC 2007),
pages 350–357, 2007.

[18] S. J. Mellor, A. N. Clark, and T. Futagami. Guest
editors’ introduction: Model-driven development.
IEEE Software, 20(5):14–18, 2003.

[19] OWASP. Top ten project. http://www.owasp.org/,
May 2007.

[20] A. O. Ramirez. Three-tier architecture. Linux Journal,
2000(75), 2000.

[21] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. S. Silver, B. Silverman, and Y. B.
Kafai. Scratch: programming for all. Commun. ACM,
52(11):60–67, 2009.

[22] Ruby on rails. http://www.rubyonrails.org/.

[23] C. Scaffidi, M. Shaw, and B. A. Myers. Estimating the
numbers of end users and end user programmers. In
Proceedings of the 2005 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC
2005), pages 207–214, 2005.

[24] Spring framework. http://www.springsource.org/.

[25] Zend framework. http://framework.zend.com/.

73

