
Program Fields for Continuous Software

Martin Erwig
School of EECS

Oregon State University
erwig@eecs.oregonstate.edu

Eric Walkingshaw
School of EECS

Oregon State University
walkiner@eecs.oregonstate.edu

ABSTRACT
We propose program fields, a formal representation for
groups of related programs, as a new abstraction to sup-
port future software engineering research in several areas.
We will discuss opportunities offered by program fields and
research questions that have to be addressed.

1. INTRODUCTION
A program field is a set of (syntactically) related pro-

grams. A programming language L defines an infinite space
of possible programs, and an individual program P ∈ L oc-
cupies a point in this space. In contrast, a program field
P = {P1, . . . , Pn} corresponds to a connected region or sub-
space of L.

Program fields open new perspectives on programming
artifacts and facilitate new approaches to program develop-
ment. Like zooming out from a single position in space to
a region around it, program fields extend the view from a
single program to a program in the context of alternatives
with regard to design and implementation.

Program fields change the focus of programming and re-
lated activities, including program analysis, testing, and de-
bugging, from a single program to a whole range of related
programs that, while sharing certain core parts, can differ
in as many respects as needed. Program fields help to keep
design options open. They can be effectively employed to de-
lay design decisions and commitments, avoiding their subse-
quent time-consuming and error-prone reversals when such
decisions prove to be premature.

Program fields have the potential to transform the soft-
ware development process from a discrete, big-step program-
to-program hopping approach toward a smoother and more
gradual transition between programs via closely related al-
ternatives. The fundamental view of a program changes by
adopting the program field perspective. While programs are
still conceived as discrete points, they are not isolated but
connected to similar programs in their neighborhood. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

supports the view of software as belonging to a continuous
domain.

In this position paper we will illustrate how program fields
can effectively address important needs in the area of soft-
ware engineering. We will argue that an expressive model
of program fields provides excellent support for a variety of
software engineering tasks and that this should therefore be
a focus area of future software engineering research.

After a discussion of the representation of program fields
in Section 2, we will present opportunities for their use in
Section 3. We will discuss operations on program fields in
Section 4 and speculate about a vision of continuous software
in Section 5. We end with conclusions in Section 6.

2. REPRESENTING PROGRAM FIELDS
While representations for languages and programs have

been studied extensively in Computer Science in the form of
grammars and inference systems, abstract syntax trees, or
textual representations in concrete syntax, there have been
few formal proposals for the systematic representation of
groups of programs.

In devising a representation for program fields, it is crit-
ical to enable factored representations on different levels of
granularity that allow the sharing of common parts. This
is important to support the editing and understanding of
program fields. For example, on the one hand, an utmost
factored representation helps avoid update anomalies when
editing a program field. On the other hand, a less factored
representation that redundantly repeats common parts sup-
ports the idea of showing differences in context. This is
already used in tools, such as diff, but has proven to be
highly effective in other areas as well [3].

The principal idea behind factoring in a program field rep-
resentation is illustrated in Figure 1: A program field with
two programs {A〈P 〉, A〈Q〉} that share a common part A
can be represented by factoring out A to produce A〈{P, Q}〉.

A
p

P

A
p

Q
A

p

P Q
distribute

factor

Figure 1: Factoring in program fields.

We have recently developed the choice calculus, a formal
representation for software variation [7] that can serve as

105

Variations

Parameter Name
x
y

Implementation
Plus
Times

All variations compile successfully.
>>

Plus: x+x

Shift left

Shift left: x<<1

int twice(int x) {
 return 2*x;
}

Figure 2: Program field editor.

a basis for representing program fields. A major idea is
to organize variation between programs through a concept
of dimensions, which facilitates the synchronization of dif-
ferences in disparate parts of programs while still allowing
factoring and sharing.

As a simple illustration consider the implementation of a
Java method twice that returns its argument doubled. The
method varies in the name of its parameter (we can have
x or y) and in how it is implemented (we can use addition,
multiplication, or bit shifting). A possible choice calculus
expression for the resulting program field of six programs is
given below. We introduce two dimensions, named Par and
Impl, for the two different kinds of variation. The dimension
names are markers for choices between alternatives in the
code. Dimensions also introduce tags that identify their al-
ternatives by name and enable the selection of alternatives.

dim Par〈x, y〉 in
dim Impl〈plus, times, shiftLeft〉 in
let v=Par〈x, y〉 in
int twice(int v) {

return Impl〈v+v, 2*v, v<<1〉;
}

When selecting one tag in a dimension, say Par.x, the al-
ternatives corresponding to x in all choices marked Par will
be selected. The dimension names tie choices to specific di-
mensions and ensure their synchronization during selection.
This aspect does not apply in this example since the param-
eter name choice has been shared through a let binding,
which helps avoid update anomalies when editing program
fields. In this example, we can easily change the name of a
variable or extend the Par dimension by a new alternative
without the need to change repeated occurrences of the Par
choice.

The shown representation offers a rich set of laws and
transformations (see [7]) and can be the basis for developing
a theory of program fields. However, the notation is prob-
ably not suitable for programmers to work with directly.
How a more user-friendly presentation could be achieved in
an editor is shown in Figure 2. Here choices are colored to
indicate their dimension, and a tooltip shows alternatives
for a particular choice. The design is similar to the CIDE
tool [9].

An intuitive and easy-to-use representation poses many
challenges, ranging from the scalability problems, such as

how to display many overlapping dimensions, to the hard
question of how to specify the extent of editing actions.

For example, suppose we change in the editing window
the name twice to double. Which variations are affected
by this change? Is the new name used in all variations,
or only in the currently selected one? Another potential
interpretation of the change is to create a new variation,
which can either be associated with an existing dimension or
lead to the introduction of a new one. The design of editing
operations and their integration into a user interface are
important problems, because an intutive interface is required
to make program fields usable in practice.

3. PROGRAM FIELDS IN ACTION
Program fields can support software development in many

ways. In the following we highlight some of the most obvious
opportunities.

3.1 Programming and Variations
One of the basic tasks of programming is to decide how

to represent a specific piece of functionality using the ele-
ments of a programming language. In most cases, there is
more than one way to do it. The difficulty in making these
decisions lies with foreseeing their consequences and impact.
Typically, a specific representation makes some tasks easy
or efficient while making others more complicated or inef-
ficient. Decisions about the right representations are often
difficult since they require anticipation about parts of the
programs that are not even written yet.

Program fields can help ameliorate this situation by sim-
ply enabling the creation of alternatives. A program that
offers two different ways of realizing a specific part of its
functionality will be represented by a program field that con-
tains two programs to account for both versions. Extending
this view to include choices among several alternatives in
many places in the program leads to program fields that
share many parts but differ in others.

Once a piece of software has been realized as a program
field, it is a simple matter of selecting alternatives to transi-
tion from one program to another. By continuously morph-
ing the program field (extending in some places by creating
new alternatives and restricting in others) the program field
becomes a gradually moving and reshaping window over the
infinite program space. Within this window transitions be-
tween programs are easy. Moreover, transitions are well de-
fined since they correspond to specific selections among the
alternatives offered by the program field.

Finally, being able to see specific program alternatives in
the broader context of the whole program field and being
able to compare a program part to its alternatives provides
a better understanding of software.

3.2 Program Design
Program fields widen the perspective on programming:

We are not exclusively focused on one specific solution to
a problem, but consider rather a range of related solutions
with alternatives that can be beneficial in specific circum-
stances. Such “solution fields” move implementations closer
to the problem. In particular, the possibility for navigation
among alternatives can aid understanding of the problem.

Like artists who work with material to express their ideas
in the most ingenious way, programmers can mold a pro-
gram back and forth by creating and moving between al-

106

ternatives to find an implementation that reflects their best
understanding of the problem. The developed alternatives
can be helpful to themselves or others to understand the
chosen design or to change the design should the context or
requirements change. This approach can also be used in the
education of software developers to illustrate different ways
to realize a particular problem.

Program fields can form the basis for tools that support
the generation and exploration of alternative program de-
signs.

More speculatively, program fields might even support the
creativity process in generating new solutions. The merg-
ing of program fields (see Section 4) could be potentially
used to combine different solutions to a problem into one
program field, which could then be transformed into a new
combined solution. For example, the diet data structure
results from combining interval and tree representations for
sets [6]. While this data structure was invented from scratch,
program field merging could at least have suggested possible
solutions for further review and refinement.

3.3 Program Analysis
Program analysis tools discover structures and relation-

ships among program parts to support the understanding of
programs by programmers.

One important such tool is diff, which is used to under-
stand the differences between two (or more) program ver-
sions. Since a factored representation of program fields re-
veals differences directly and in the context of common pro-
gram parts, a differencing tool is an immediate, necessary
by-product of program fields.

What distinguishes diff from most other program anal-
ysis tools is that it does not provide information about one
program, but rather works on two programs, which means
that diff produces information about a program in the con-
text of another. This idea is at the core of program fields.
In a way program fields could be viewed as a systematic
representational generalization of diff.

Other program analysis tools typically compute specific
properties of programs and map (parts of) programs into
some (often more abstract) domain. Examples are typing
information of identifiers or dependencies between modules.
The idea of program fields can be applied to these domains
to show, for example, the variation in typing information
or module dependencies. Since the fields represent proper-
ties of programs, they should be accordingly called property
fields. Property fields, like program fields, provide a broader
perspective on specific program information by presenting it
in a contextual fashion.

Finally, program fields suggest the generalization of pro-
gram analysis to program field analysis to answer questions
about groups of related programs. Tools such as diff are
simple examples, but we can envision much more. For exam-
ple, we can observe that a program field is not an arbitrary
subset of L, but rather one whose elements are more or less
closely related. Based on notions of program similarity and
proximity, we can map out different areas of the program
field based on diversity and various measurements of varia-
tion.

Property maps generated from program fields may pro-
duce something like “geology maps” showing stable areas,
“fault lines”, etc. that can be exploited by tools for testing
or other tasks (see below).

3.4 Testing and Debugging
A program field can represent related programs that all

have the same functionality and share, in principle, the same
implementations, but differ in fault prevalence and degree of
testedness. In such a scenario, program fields can support
regression testing [13] by offering a systematic representation
of program evolution over a testing and bug-fixing episode.

But even the variation representation offered by program
fields can support testing efforts. A program field essentially
provides a representation of a software product line [11, 12].
In general, software product lines contain too many prod-
ucts to test each in isolation and require new approaches to
spend testing resources more wisely [5]. Since some repre-
sentations of variations seem to be better suited for efficient
testing than others [4], transformation rules that allow the
restructuring of program fields can be employed to transform
them into a form that is better testable.

The idea behind goal-directed debugging [1] is to infer,
based on an observed difference between the expected and
actual behaviors of a program, sufficient changes to a pro-
gram that would cause it to show the expected behavior.
(This idea is similar to the WhyLine [10], except that the
WhyLine only points to program locations and does not in-
fer changes.) Goal-directed debugging can be directly sup-
ported by program fields since they offer the ability to ex-
plicitly represent code alternatives.

3.5 Summary
Program fields enrich the programming activity by di-

rectly supporting ideas from the area of software product
lines. Specifically, they support program design through
the maintenance of program variations, the smooth transi-
tion between programs (adding features, changing behavior,
etc.), and the understanding of programs in the context of
alternatives.

Moreover, program fields support through their represen-
tation various forms of program analysis. Specifically, the
presented examples indicate that program fields offer oppor-
tunities for the tight integration of tools and analyses with
the program representation.

4. OPERATIONS ON PROGRAM FIELDS
Obvious operations on program fields are those that ex-

tend or shrink program fields by adding or removing spe-
cific variations. While these are important in practice, they
seem to be instances of more general operations that should
be studied to gain a deeper understanding of program fields
and their properties.

The most fundamental operation on program fields seems
to be a binary operation to merge program fields. Such an
operation can be employed to combine alternative imple-
mentations, add program variations, and implement a tool
similar to diff. The merging of program fields is a com-
bination of union and intersection where common parts of
a merged program field are identified and represented as a
shared component.

The dual operation “unmerge” (or split) can be used to
shrink program fields. When certain parts of a program
field become obsolete, unmerge can determine disconnected
components that result from removing these obsolete parts.

Looking beyond operations for single, small-step modifi-
cations to program fields, we can ask the question of how to
evolve program fields systematically. For example, are there

107

scenarios in which scripts or programs for systematic adap-
tation of program fields could be useful? A related question
of language design is whether it is better to keep a sepa-
rate level of field manipulation operators or integrate oper-
ations directly into programming languages, in which case
programs could define their own evolution (as is investigated
in a related research project [2]).

In addition to modification operations of program fields,
there are many interesting questions about program fields
that can be answered by defining suitable operations. We
can envision measuring the degree of variation within a pro-
gram field, or correspondingly their cohesion, based on a
degree of sharing. Based on such measures, we can also
define the notion of distance between two program fields.

More generally, since program fields can represent whole
software repositories, we can envision the definition of query
languages to find out about programs, program parts, and
their relationships, and to explore the represented space of
software.

5. CONTINUOUS SOFTWARE
The abstraction of program fields can help shift our un-

derstanding of the nature of software as discrete objects to
one of a more continuous matter. Remodeling a house is
a process that is marked by discrete changes (taking out a
wall, replacing a bathtub, etc.). Even though some parts
may not function as usual, the house is still mostly usable
during the remodeling phase. The whole process can be
planned and managed in steps that can ensure in most cases
a relatively smooth transition and that lets remodeling be
perceived as continuous. Although some research is done
in this area [8], the situation for software is typically very
different because a minor change to a program might render
it completely unusable—it might not even compile, and the
transition from one program version to another is typically
perceived as a very abrupt and discrete process.

Existing systems for producing software product lines or
managing revisions to software over time can be considered
special cases of the more general view offered by program
fields. While revision control systems enable a relatively
continuous view of software in the temporal dimension, vari-
ation in other dimensions (via branching) are clumsy and
discrete. Software product line systems provide better sup-
port for variability in many dimensions, but typically require
substantial planning and diligence to use effectively, making
them not very conducive to a continuous, evolutionary view
of software change.

In many domains we are used to a “continuity of change”
principle that lets us expect the nature and behavior of ob-
jects to change proportionally with changes applied to them.
This is not always the case, but in many everyday situations,
minor changes can be managed easily, and big changes can
be decomposed into smaller oones.

The vision of continuous software is to achieve a simi-
lar situation for software, where changes can be gradually
phased in without major disruptions. As one way to accom-
plish this goal, program fields can serve as a representation
that fills the empty space between programs that often seems
to be an unsurpassable barrier separating them.

6. CONCLUSIONS
Program fields promote groups of programs as a funda-

mental unit of abstraction in software engineering. We have
described various applications of program fields and their
support for a continuous vision of software.

However, all these benefits and opportunities do not come
for free. Program fields are necessarily more complex than
single programs and thus require more effort for mainte-
nance. Program fields are also more difficult to edit than
single programs. An important scientific question to be ad-
dressed will be whether the benefits of program fields are
worth the additional costs.

Acknowledgments
This work is supported by the Air Force Office of Scientific
Research under the grant FA9550-09-1-0229 and by the Na-
tional Science Foundation under the grant CCF-0917092.

7. REFERENCES
[1] R. Abraham and M. Erwig. GoalDebug: A

Spreadsheet Debugger for End Users. In 29th IEEE
Int. Conf. on Software Engineering, pages 251–260,
2007.

[2] T. Bauer, M. Erwig, A. Fern, and J. Pinto.
Adaptation-Based Program Generation in Java.
Submitted for Publication.

[3] C. Chambers, M. Erwig, and M. Luckey. SheetDiff: A
Tool for Identifying Changes in Spreadsheets. In IEEE
Int. Symp. on Visual Languages and Human-Centric
Computing, 2010. To appear.

[4] Myra B. Cohen. Personal communication, 2010.

[5] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi.
Interaction Testing of Highly-Configurable Systems in
the Presence of Constraints. In International
Symposium on Software Testing and Analysis, pages
129–139, New York, NY, USA, 2007. ACM.

[6] M. Erwig. Diets for Fat Sets. Journal of Functional
Programming, 8(6):627–632, 1998.

[7] M. Erwig and E. Walkingshaw. The Choice Calculus:
A Representation for Software Variation. ACM
Transactions on Software Engineering and
Methodology, 2010. To appear.

[8] M. Hicks and S. Nettles. Dynamic Software Updating.
ACM Transactions on Programming Languages and
Systems, 27(6):1049–1096, 2005.

[9] C. Kästner, S. Apel, and M. Kuhlemann. Granularity
in Software Product Lines. In IEEE Int. Conf. on
Software Engineering, pages 311–320, 2008.

[10] Andrew J. Ko and Brad A. Myers. Debugging
Reinvented: Asking and Answering Why and Why
Not Questions About Program Behavior. In 30th Int.
Conf. on Software Engineering, pages 301–310, 2008.

[11] D. L. Parnas. On the Design and Development of
Program Families. IEEE Trans. on Software
Engineering, 2(1):1–9, 1976.

[12] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer-Verlang, Berlin Heidelberg,
2005.

[13] Gregg Rothermel, Roland H. Untch, Chengyun Chu,
and Mary Jean Harrold. Prioritizing Test Cases For
Regression Testing. IEEE Transactions on Software
Engineering, 27:929–948, 2001.

108

