
Research toward an Engineering Discipline for Software

Mary Shaw
Carnegie Mellon University

Institute for Software Research
Pittsburgh PA, USA

mary.shaw@cs.cmu.edu

ABSTRACT
Software engineering should aspire to be a true engineering
discipline. We have made good progress in some areas, but a
number of aspects of practical engineering are under-represented
in our research portfolio. We have been slow to move beyond
well-delimited systems developed by professional programmers to
systems integrated from multiple public sources that evolve in the
hands of their users. We have focused on formal reasoning and
systematic testing to the detriment of qualitative and incremental
reasoning supporting cost-effective, rather than perfect solutions.
We have been slow to codify our results into unified theories and
practical reference material. To establish a true engineering
discipline for software, we need to broaden our view of what
constitutes a “software system” and we need to develop
techniques that help to provide cost-effective quality despite
associated uncertainties.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General

General Terms
Design, Documentation, Economics, Human Factors, Reliability

Keywords
software engineering research, ultra-large scale systems, end user
software engineering, software design, low-ceremony evidence,
everyday software, handbooks

1. INTRODUCTION
At Carnegie Mellon we understand software engineering to be
“the branch of computer science that creates practical, cost-
effective solutions to computing and information processing
problems, preferentially by applying scientific knowledge,
developing software systems in the service of mankind” [20].
The technical foundation of software engineering is a body of
core computer science concepts. This technical knowledge is
applied through a body of engineering knowledge about the
pragmatics of design and problem solving. These are
complemented by the social and economic context of the
engineering effort to provide a basis for shaping engineered
artifacts for their intended use.

In this view, software engineering should be an engineering
discipline, on a par with the classical engineering disciplines, though
with its own distinctive character – software engineering’s paradigm
is computational; software’s design-intensive nature minimizes
manufacturing cost; and software’s symbolic and abstract basis
makes it more constrained by intellectual complexity than by
fundamental physical laws. Despite these differences, software
engineering shares with classical engineering the need for design
techniques to reconcile conflicting constraints and achieve cost-
effective results, as well as reliance not only on established
scientific knowledge but also on systematically codified
observations drawn from experience.

In the four decades since our field was named, we have made
substantial progress in many areas, especially program development
and maintenance, management and development processes, and
formal foundations and analysis techniques. Notwithstanding this
progress, we still lack a firm engineering basis for our field.

In those same four decades, software has become pervasive. Our
society and our economy depend on software embedded in the
infrastructure, on software composed of independent resources that
evolve independently, and on software created and modified by
people who are not trained in software engineering. Not only is
software at the heart of our physical infrastructure and economic
system, it has become a critical information and communication
resources as the public at large comes to increasingly depend on
software (modern automobiles and airplanes are increasingly
controlled by software rather than mechanical linkages, and three
quarters of American adults now use the Internet [16]).

The current center of attention in software engineering research is
evident in the topics of conferences and in the distribution of topics
within conferences. For example, the past two months of
SEWORLD conference and symposium announcements [1] are
dominated by conferences on formal theories, software processes,
and topics dealing with the development and maintenance of code
by professional programmers. This is consistent with what I have
seen on occasions when I have inventoried the topics of papers in
conferences: the most common topics are consistently related to
development processes and cost estimation; analyzing, verifying or
debugging code; and integrating and testing collections of program
components. Although neither of these observations is rigorous,
they are both strongly suggestive.

For software engineering to become a genuine engineering
discipline we must broaden its scope to be more representative of
the artifacts and activities of practical software; we must expand its
range of models to include qualitative and approximate models; and
we must establish a culture that rewards organizing knowledge for
routine use. This position paper surveys these areas, offering
suggestive examples but not fully-fleshed-out research programs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.

337

2. BROADEN THE SCOPE OF
“SOFTWARE”
Software systems are no longer just clearly-delimited, tightly-
integrated collections of code modules developed as discrete
projects, amenable to precise specifications and validation against
those specifications. Rather, they are now composed, often
opportunistically and dynamically, from independent components
and from resources other than code modules. Further, software is
often developed, modified, or tailored by people whose principal
responsibility is not software development. In addition, software
is deeply embedded in the public infrastructure, and as a result the
boundary between the software system and its environment is
often indistinct, so the capability of the system arises from the
activities of its users as well as the core software. The scope of
“software engineering” must be expanded to encompass the
varieties of software that exist in the real world.

2.1 Beyond Code
The principal focus of software engineering has been program
modules written in general-purpose programming languages,
generally to an explicit, if not formal, specification. These
modules are composed into systems, possibly with known
modules acquired from third parties.
In practice, however, software systems incorporate resources such
as data, media, dynamic state, real-time data feeds, properties of
operating context, interaction protocols, user interface designs,
scripts, high-level architecture, design intent, and metadata
required for compliance with policies and changing requirements.
Web pages, for example, incorporate many of these elements:
layout (HTML), data (XML), dynamic behavior (JavaScript et al),
and layout state change (implicit, lacking good abstraction or
notation) coexist in an uneasy alliance. The organization of large
systems is guided by a maturing understanding of software
architectures that recognizes components of diverse types that
interact in specific ways, [7][21] but the current focus on object-
oriented development environments has distracted attention from
the architectural role of other sorts of resources.
We have good abstractions for only a few of these types of
resources, and even the abstractions we do have are not well
integrated with programming languages. Research in this area
should refine existing abstractions, defining new ones as
necessary, for these non-code resources and integrate them into
software development languages and tools in such a way that they
complement existing programming languages.

2.2 Beyond Programmers
Most software engineering research focuses on software
developed by professional programmers using explicitly defined
development processes.

 In practice, however, people who develop, compose, script, or
tailor software but whose principal responsibilities lie elsewhere
(often called “end user programmers”) are coming to vastly
outnumber professional programmers [18]. Software engineering
is only beginning to support the lightweight development
techniques appropriate for many of these developers. Worse,
support for engineering considerations such as reliability,
evolvability, suitability for task, security, and privacy is even less
robust. Yahoo Pipes [26] is a good example of a task-specific
language that supports abstractions appropriate for merging and
filtering RSS feeds in an accessible manner, but its support for

engineering aspects of construction and maintenance is meager at
best. Lightweight languages such as scripting languages have
been neglected for decades; Brooks identifies the greatest flaw in
JCL (Job Control Language, a scripting language for IBM’s
OS/360 designed in the mid-1960’s) as its designers’ failure to
recognize that it was actually a programming language [3].

 A research community in end user software engineering is
emerging [9], and useful results are being published (a survey of
current research will appear soon [15]). Research in this area
should address not only engineering considerations for individual
programs but also issues associated with composing separate
software resources, such as spreadsheets with web pages. The
challenges include not only the technical issues of raising
lightweight languages to the level of design and support that we
expect for traditional programming languages, but also
establishing models that allow the broader population to use them
effectively to develop dependable solutions to their own
problems.

2.3 Beyond Integration of Program
Components
Software engineering research usually assumes that a software
development project has a project manager who controls the
system configuration and who is aware of, and possibly in control
of, changes to components.

 As more software resources are provided via the Internet and
move to “the cloud” (that is, to distributed servers controlled by
service providers rather than by the owner of the data and
software), control of system configuration moves farther from the
system developer. In this setting, many resources are
underspecified, autonomous (they are independently created and
managed and may change structure or format without notice), and
heterogeneous (they are packaged with different interface
assumptions rather than all satisfying a common API). The
resources are often used opportunistically for purposes other than
their original intended purposes. Web “mashups” exemplify this
style; a common function of mashups is to aggregate information
from multiple web sites [24], for example by merging information
resources with Google Maps [11]. Service-oriented architectures
(SOA) also exemplify many aspects of this style, though they
usually draw components from a common family to ease
integration (or “orchestration”).

Further, the emergence of ultra large-scale systems [23] brings
new challenges for developing and controlling systems that allow
for only limited central or hierarchical control; that must respond
to conflicting, possibly unknowable requirements arising from
social and political considerations; that must operate and evolve
continuously, that have only indistinct system boundaries; and for
which the character of the system emerges from the behavior of
its users, not solely from the software.

Emerging research on mashups and SOAs has begun to address
the richness of modern network-based software; work on self-
adaptive systems offers help with reacting to changes in resources
[4][6]; and the CONNECT Project is developing techniques for
integrating heterogeneous components [8]. Health care initiatives
are beginning to call for integration of information from many
sources, with consideration for the quality and semantics of the
information from each source [17].

338

Open research opportunities include composition techniques that
monitor the individual resources to ensure proper behavior and
respond to anomalies; abstractions that allow automatic
replacement of defective resources (e.g., a “weather forecast” that
might be instantiated from either weather.com, accuweather.com,
or noaa.gov), models for defining and enforcing policies on the
envelope of permitted behavior rather than specifying incidental
details; and architectures that control the interactions among
subsystems to isolate faults and simplify troubleshooting.

3. EXPAND THE RANGE OF OUR
THEORIES AND TECHNIQUES
Civil engineering is rooted in theories of statics and dynamic
flow, but civil engineering must go far beyond those theories to
design structures that serve practical purposes. Engineering design
requires reconciliation of conflicting constraints and the selection
of solutions based on cost-benefit analyses. Engineers prefer to
apply formal systems when possible, but they fall back on
approximations, codified experience, and engineering judgment
when sound theory is not available. They protect themselves from
the resulting uncertainties by including safety factors in their
designs and by relying on prior art when possible, innovating only
when necessary.
Similarly, software engineering needs to move beyond the scope
that is implied by our emphasis on closed-shop systems – projects
with delimited scope, professional developers and explicit,
preferably formal, specifications.
In a real world of limited resources, it is not practical to complete
a full analysis and validation for every system. Systems have
different levels of criticality and different consequences of failure.
We should seek appropriate levels of quality for each application
rather than acting as if we could (or should) do full validation on
all. The impact of this cost-effectiveness imperative is that we
need to accept approximate, qualitative, or informal assurances in
some cases – but we have not developed systematic techniques
for deciding how good those assurances need to be in a particular
case.

3.1 Design
In software engineering, “design” often means “drawing UML
diagrams”. In classical engineering, on the other hand, the design
activity establishes what should be expressed in the analog of
UML diagrams. Engineering design reconciles the conflicting
constraints of the problem in light of the client’s priorities and
budget. It seeks not only a solution to the problem, but it
compares multiple alternative solutions to find a cost-effective
solution that balances priorities, constraints, and costs.

Software engineering would benefit from more research on design
in the classical engineering sense. This involves problem setting
in Schön’s sense (deciding what to build) [19] as well as problem
solving in Simon’s sense (figuring out how to build it) [22]. It
involves greater attention to the translation between the
expression of the requirement in the problem space and the
exploration of the implementation in the solution space. It
involves explicit consideration of cost as well as benefit to
establish appropriate levels of dependability, performance, and
other properties – that is, explicit attention to the client’s utility
function.

A particular opportunity lies in finding good ways to represent
design spaces – not just systematically representing the design
alternatives, but the implications of those choices [2][3][25].

3.2 Low-Ceremony Reasoning
In software engineering, the “gold standard” for program
correctness is the trio of formal verification, systematic testing,
and empirical studies of operation. Each of these is a high-
ceremony process, with assurance arising from a discrete, often
resource-intensive, validation event.

In the real world, however, most of the software that most of us
use most of the time is not “correct” according to the gold
standard. The release notes for new system releases commonly
include a section of “known issues”, many of which are errors.
Yet we choose to use these “incorrect’ systems because on
balance we find it more cost-effective to use them than not to.

Although certain critical systems can justify high-ceremony
validation, for most everyday systems our confidence arises
incrementally, based on fragments of evidence that may be
individually unreliable but that, taken as a whole, provide an
acceptable basis for decisions. Such evidence includes reputation,
user reports, editorial reviews, advertising claims, and “best X”
reports based on linear functions of subjective marks. This leads
to a low-ceremony process for developing confidence that is
incremental, often informal, context-dependent, and possibly
nonmonotonic. Although not suitable for safety-critical systems, it
can incorporate many sources of information about the credibility
of a product. It is also a much better match than high-ceremony
techniques for use by end users.

Recommendation systems, reputation systems, machine learning,
auction and betting mechanisms, and other inexact techniques
offer ways to aggregate inexact or unreliable evidence. Software
engineering would benefit from research on how to harness these
techniques to develop confidence in software systems. The results
would not be suitable for high assurance systems, but they have
promise of being cost-effective for decisions about everyday
software. For everyday software, the evaluation process would
then involve two questions: (a) How good does this software have
to be? and (b) How good do I believe this software to be?

3.3 Dependability and Trust Properties
Software engineering has a substantial body of results on
dependability, security, performance, and other quality properties.
Nevertheless, our industry still delivers computers that are very
difficult for anyone who is not a trained system administrator to
install and maintain in a safe state that establishes and preserves
these properties.

Dependability, as an example of one of these quality properties,
can be addressed at three levels. First, we can analyze the
intrinsic dependability of a component in a given environment
based on a specific set of attributes, such as availability,
reliability, safety, and integrity. This yields an evaluation of the
component, but only of the component in isolation. Second, we
can analyze contextual dependability, based on the specific needs
and priorities of that environment. For a given component, this
leads to different sets of attributes and different evaluation results
for each distinct environment, reflecting that environment’s
needs, tolerances, priorities, and expectations. These results are
not transferable to other environments, but they are more useful in

339

each instance. Third, we can analyze dependability in practice,
considering the behavior of users as well – especially the ways
that users can be confused, distracted, unmotivated, or
noncompliant.

The software engineering results on quality properties are chiefly
of the first kind, with some attention to the second. This might
arguably have sufficed when the effects of poor dependability
were limited to the owner of the system. However, in the highly
inter-connected world of the Internet local vulnerability can have
global effects. For example, the well-known difficulty in
configuring and administering personal computers has led to huge
numbers of insecure machines that are infected by malware and
co-opted into armies engaged in malicious behavior that can
potentially threaten the infrastructure of the network itself. Even
if those personal computers were intrinsically safe (in the sense of
meeting specifications or standards), indeed if they were
contextually safe for their intended use, the complexity of
administering them – of selecting an appropriate configuration for
the operating environment – is too great for individual personal
computer owners, and therefore defeats dependability in practice.
Many aspects of usability, of course, lie within the domain of
human-computer interaction. However, structural characteristics
of systems that make them hard to understand and manage lie
solidly within software engineering

Software engineering would certainly benefit from more research
on dependability and trust properties, especially security and
privacy. The most pressing need, though, is for research that leads
to the development of systems that can be dependable in practice.
This might, for example, build on results from self-adaptive
systems to develop systems that assumed a greater share of the
responsibility for preserving system integrity and stability.

3.4 Codifying Engineering Knowledge for
Practical Use
Software engineering research emphasizes novel, innovative
results. A notable exception is the work on design patterns
[5][10][13], where explication of working solutions is explicitly
more values than innovation.

Classical engineering disciplines, however, value routine design
over innovative design in most cases where that is practical. To
accomplish this, much of the core knowledge is captured in
engineering handbooks and other reference material[12]. Software
engineering has done this only to a limited extent, mostly for
information about specific products – and only slightly for general
design knowledge and theories that transcend particular products.
We need the analog of engineering handbooks that organize
useful theories and pragmatics in a form that allows designers to
choose techniques based on the task at hand. This will support
opportunistic choices of models as exemplified by Jackson in his
introduction to problem frames [14].

For example, modern adaptive software systems usually embed
feedback control mechanisms to respond to uncertainties and
changes in the external environment. Despite control theory’s
well-established body of knowledge about feedback systems,
which is referenced routinely in traditional engineering disciplines
[12], descriptions of adaptive software systems rarely make the

feedback loops explicit. If the feedback loops were made explicit,
it would raise validation obligations such as establishing that the
current state of the system is adequately modeled, that the control
strategy is appropriate to the problem, and that the controller has
sufficient command authority over the controlled process. Failing
to make the feedback loop explicit leads designers to ignore these
obligations [4]. This is particularly problematic when control
loops at different levels of abstraction interact. If the control
theorists’ understanding of the varieties of control and the
associate proof obligations were codified in such a way that
software engineers could incorporate that knowledge – and if the
control view were treated as a first-class view, on a par with
views supported by UML – then it would be much easier to
establish correctness of this sort of adaptive system.

An important challenge for software engineering is to develop
reference materials that unify and codify the results of our
research. The classical engineering model of publishing large
tomes at multi-year intervals will not suffice for the rapidly-
developing body of knowledge in software engineering, so part of
this challenge is to find a way to develop these reference
materials online.

4. RECOMMENDATION
This position paper starts with the proposition that software
engineering should be an engineering discipline and the research
community should establish a basis for that discipline. It identifies
discrepancies between the types of software that dominate the
attention of the research community and the types of software in
practice. It goes on to identify discrepancies between the types of
theories and techniques that dominate the attention of the research
community and the types of theories and techniques that area
appropriate to software in practice, noting research areas that are
under-represented in our portfolio.

This analysis intrinsically yields a breadth-first overview, so the
specific examples are suggestive, not comprehensive, and none of
the examples are fully fleshed out as full drafts of research
initiatives. It does not lead to an overarching unified theory that
solves all problems of practical software. The world is too rich,
too complex, to hope for this.

This analysis does not suggest that current work fails to contribute
to the objective. We have thriving communities making
substantial progress on theoretical models, development
processes, and code-level issues. These are all parts of the
engineering discipline we seek. As we plan future research
initiatives, though, the points of highest leverage are the under-
represented areas, where progress will break new ground.

Needless to say, good models and theories should apply despite
changes in applications and platforms. Research that narrowly
pursues the current technology or the current fashion is unlikely
to have enduring effect. What’s new here is the recognition that
intrinsic uncertainties of modern systems lead to issues that are
not addressed by current models.

5. ACKNOWLEDGEMENT
This work was supported by the A. J. Perlis Professorship in
Computer Science.

340

6. REFERENCES
[1] ACM SIGSoft. SEWORLD (a mailing list for dissemination

of time-sensitive information such as calls for papers).
http://www.sigsoft.org/seworld/ , accessed 2 Sep 2010.

[2] C. Gordon Bell and Allen Newell. Computer Structures:
Readings and Examples. McGraw-Hill, New York, 1971.

[3] Frederick P. Brooks. The Design of Design: Essays from a
Computer Scientist. Addison-Wesley, 2010.

[4] Yury Brun et al. Engineering Self-Adaptive Systems through
Feedback Loops. In Software Engineering for Self-Adaptive
Systems, Lecture Notes in Computer Science 5525, Springer
Verlag 2009, pp.48-70.

[5] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad. Pattern-Oriented Software Architecture, Volume
1: A System of Patterns. Wiley 1996.

[6] Betty H. C. Cheng et al. Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In Software
Engineering for Self-Adaptive Systems, Lecture Notes in
Computer Science 5525, Springer Verlag 2009, pp. 1-26.

[7] Paul Clements et al. Documenting Software Architectures:
Views and Beyond. Addison-Wesley Professional, 2nd ed
2010.

[8] CONNECT (Emergent Connectors for Eternal Software
Intensive Networked Systems) Project. http://connect-
forever.eu/ , accessed 18 Jun 2010.

[9] EUSES (End Users Shaping Effective Software) Consortium.
http://eusesconsortium.org/ , accessed 18 Jun 2010.

[10] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley 1995.

[11] Google. Google Maps API Family.
https://code.google.com/apis/maps/index.html , accessed 2 Sep
2010.

[12] Don W. Green, Robert H. Perry. Section 8, Process Control.
Perry's Chemical Engineers' Handbook. McGraw-Hill, 8th
edition 2008. Online version available at:
http://knovel.com/web/portal/browse/display?_EXT_KNOVEL_DIS
PLAY_bookid=2203&VerticalID=0, accessed September 6,
2010.

[13] Hillside Group. Pattern Languages of Programs. Annual
conference, 1994- . http://hillside.net/conferences/plop , accessed
6 Sep 2010.

[14] Michael Jackson. Problem Frames: Analysing & Structuring
Software Development Problems. Addison-Wesley
Professional 2000.

[15] Andrew J. Ko et al. The State of the Art in End-User
Software Engineering. ACM Computing Surveys, to appear.

[16] Pew Foundation Internet and American Life Project.
Demographics of Internet Users.
http://www.pewinternet.org/Static-Pages/Trend-Data/Whos-
Online.aspx , accessed 18 Jun 2010.

[17] Office of the National Coordinator for Health Information
Technology. Strategic Health IT Advanced Research
Projects (SHARP) Program,
http://healthit.hhs.gov/portal/server.pt?open=512&objID=1436&par
entname=CommunityPage&parentid=8&mode=2 . accessed 2 Sep
2010.

[18] Christopher Scaffidi, Mary Shaw, and Brad Myers.
Estimating the Numbers of End Users and End User
Programmers. VL/HCC'05: Proc 2005 IEEE Symposium on
Visual Languages and Human-Centric Computing, pp. 207-
214, 2005.

[19] Donald Schön. The Reflective Practitioner: how
professionals think in action Temple Smith, 1983.

[20] Mary Shaw (editor). Software Engineering for the 21st
Century: A basis for rethinking the curriculum, Technical
Report CMU-ISRI-05-108, Carnegie Mellon University,
Institute for Software Research International, Pittsburgh, PA,
March 2005.

[21] Mary Shaw and David Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall 1996.

[22] Herbert A. Simon. Sciences of the Artificial. MIT Press, 3rd
edition 1996.

[23] Software Engineering Institute. Ultra-Large-Scale Systems.
Software Engineering Institute, 2006.

[24] Jeffrey Wong and Jason Hong. What do we “mashup” when
we make mashups? WEUSE’08 Proc. 4th Int’l Workshop on
End-user Software Engineering, at ICSE 2008, pp.35-39.

[25] Robert F. Woodbury and Andrew L. Burrow. Whither design
space? Artificial Intelligence for Engineering Design,
Analysis, and Manufacturing, vol 20 no 2, 2006, pp. 63-82.

[26] Yahoo. Pipes: Rewire the Web. http://pipes.yahoo.com/pipes/ ,
accessed 2 Sep, 2010.

341

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

