
The Future of Library Specification

Gary T. Leavens
University of Central Florida

Orlando, FL, USA
leavens@eecs.ucf.edu

ABSTRACT
Programming language technology has started to achieve
one of the dreams of software engineering — large scale uti-
lization of reusable components. This is due to the standard-
ization of large libraries and frameworks in popular program-
ming languages such as C++, Java, C#, and Python. This
standardization and widespread use of libraries will continue
to make module specification more and more important. Yet
most libraries and frameworks are only specified informally
using natural language. This position paper explores re-
search questions related to the specification of such libraries
and frameworks.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specific-
ations—languages, tools; D.2.2 [Software Engineering]:
Design Tools and Techniques—modules and interfaces, soft-
ware libraries; D.2.4 [Software Engineering]: Software
/ Program Verification—formal methods, programming by
contract ; D.2.5 [Software Engineering]: Testing and De-
bugging—debugging aids, testing tools; D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—
documentation; D.2.13 [Software Engineering]: Reusable
Software—reusable libraries; F.3.1 [Logics and Meanings
of Programs]: Specifying and Verifying and Reasoning
about Programs—specification techniques

General Terms
DOCUMENTATION, VERIFICATION

Keywords
library, framework, specification, documentation

1. INTRODUCTION AND PROBLEM
For a long time I have been interested in the problem of

specification language design. In this paper I want to make

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

the case that this problem will be increasingly important in
the future, and to explore ways that specification languages
might become increasingly useful.

Module specification, which I and others have also called
behavioral interface specification, is important and will be-
come more important because of an accelerating trend in
programming. This trend is that programming is and will
be increasingly dependent on large frameworks and code li-
braries.1 This is clear from successful programming lan-
guages such as C++, Java, C# (and .NET), Python, and
Ruby, all of which provide programmers with very large and
extensive libraries. For example, the Java 1.6 Standard Edi-
tion platform has 219 packages covering many domains, such
as GUIs, I/O, mathematics, collection data structures, re-
mote message invocation, databases (SQL and XML), con-
currency control, logging, regular expressions, image pro-
cessing, cryptography, etc. The increased productivity that
results from the use of such libraries helps explain the pop-
ularity of these languages. The size and breadth of such
libraries will likely increase in the future, as this is one of
the principal areas where different languages compete with
each other.

A fundamental research problem is thus the following: To
what extent do libraries increase software productivity and
decrease the total cost of software built using them? Such
a study, which I hope someone else will do, could also lead
to recommendations for key features that contribute to pro-
ductivity and other software engineering qualities, such as
reliability.

My own interest in this area is based on the assumption
that, when programming with a large library, users have two
fundamental problems:

1. A learning problem, which is understanding the pur-
pose, architecture, and capabilities of the library, so
that one knows which parts of a software system can
be profitably delegated to the library.

2. A reference problem, which is quickly finding answers
to detailed questions about the library, so that one can
find and use a part of the library to correctly accom-
plish some specific programming task.

To summarize, libraries are a welcome and increasingly
important part of programming. An important research
question for software engineering is: What technology can
we use to specify libraries in a way that solves the learning

1Hereafter, I will just say “libraries” instead of “frameworks
and code libraries.”

211

and reference problems, but which lowers the total cost of
software built using these libraries? This same technology
might also be useful for documentation of other software en-
tities, but the economic case for reusable code bases such
as libraries will be the best one possible, since even small
savings during each reuse have the potential to offset the
one-time fixed costs of developing the documentation.

2. SOLUTION APPROACHES
There are several candidate technologies for addressing

the learning and reference problems, which I discuss below.
It is not my intention to dismiss these alternatives or any
other technologies from consideration. (Judging between
these technologies is a research problem!) Indeed, many,
if not most, of these have unique benefits.

2.1 Natural Language Approaches
Currently, the main technology for addressing the learning

and reference problems is documentation written in some
natural language (such as English). However, the use of
natural language as the primary documentation technology
causes several problems, all of which relate to the reference
problem described above:

• It is often imprecise or ambiguous.

• The use of natural language poses translation prob-
lems, which makes it hard for non-fluent speakers to
understand precisely and quickly.

• It is hard for automated tools to use natural language
descriptions in testing, debugging, or reasoning about
programs.2

Nevertheless, natural language documentation does have
its advantages. It seems inexpensive to produce, since the
people writing documentation are often not specially trained.
It allows a high degree of freedom in structuring the docu-
mentation, which helps with the learning problem. Also,
when done well, natural language documentation can sum-
marize behavior at an appropriate level of abstraction. Fur-
ther, for those fluent in the language, such documentation
can be processed very quickly, without much interruption
to one’s thought process. The ability of integrated develop-
ment environments, such as Eclipse (or Microsoft’s Visual
Studio) to bring up a few sentences of documentation sum-
marizing the behavior of a method is often all that is needed
by an expert programmer to answer a reference question.

Documentation Comments.
Often natural language documentation is found in slightly

structured comments, kept with the source code, as in java-
docs. Keeping the documentation with the code helps keep
it up to date with code changes. However, being up to date
with the code cannot be automatically enforced, as there is
no formal connection between the comments and the code.

2There is some recent work aimed at automated extraction
of information from natural language descriptions, such as
the work of Hill et al. [9], and Jim [10], but clearly there
is more to be done to address the problem of using natu-
ral language documentation as specifications for purposes of
testing, debugging, or reasoning about libraries.

On-line developer forums or social networks.
On-line developer forums or social networks (such as Link-

edIn) can be very useful for resolving thorny debugging prob-
lems. However, for novel problems their main disadvantage
is that they need human experts and can be very slow to
produce answers (several days). On the other hand, often
a search can reveal answers to an analogous question, and
one can translate that into an answer to one’s own question,
given a bit of time. Since searching for and interpreting
analogous problems may take some time, on-line forums and
social networks are not ideal for daily use in solving routine
reference problems.

On-line forums can also be of some help in the learning
problem, since they tend to collect examples, but are not
typically geared towards systematic collection of teaching
material.

Phone Hotlines.
Phone hotlines are not quite as slow as on-line forums, but

seem quite a bit more expensive, since they must be staffed
by experts. Like developer forums, they are not appropriate
for daily use or for solving routine reference problems. They
are certainly are inappropriate for solving learning problems.

Video Tutorials or Lectures.
Video tutorials or lectures are quite useful for orienta-

tion, background, and general information. Thus videos
may be very good for initial learning. However, the pace of
a video means that some details must inevitably be omitted,
and it seems hopeless to try to sequentially search a video
for specific answers to particular (reference) problems. (On
the other hand, perhaps better indexing facilities for videos
could help solve this problem.)

Books.
Books can be very good for both learning and reference

purposes, and there are several books about popular libraries.
However, the books I have of this sort are usually too dry to
read except when first learning a library, and thus usually
only get used as a reference. Even as reference materials
physical books (on paper) are often not ideal, since indexing
is often not done well and the reader often does not know
the appropriate index terms. However, electronic books can
be searched more easily. Books may be equipped with sev-
eral different facilities for accessing information (outlines,
indexes, etc.). Books can also collect not only natural lan-
guage documentation but can also present examples of proper
usage (code). (Electronic books could potentially also run
or animate such examples.)

2.2 Code-Based Approaches
In theory, source code written in some programming lan-

guage allows for communication between humans and ma-
chines, so programs have the potential to be both precise and
communicative. Code in a programming language is mathe-
matically precise, and is often more detailed than is typical
in mathematics. Being mathematically precise, code can
also be manipulated by various automated tools, including
debuggers and verification tools. In addition, programmers
fluent in different natural languages can all understand the
same programming language (although names for variables
and methods may need translation).

212

Examples.
Examples of proper usage of a library can be very illu-

minating, especially for novice users. Such sets of examples
may be collected and presented in tutorial fashion (a good
example being Campione and Walrath’s Java tutorial [2]) or
may be found in the wild by searching in code repositories
(such as sourceforge.net or Google Code).

One problem with finding examples in the wild is that
these examples are necessarily open source, since proprietary
code will not be available for browsing.3 Another problem is
that searching for existing examples does not help in creating
an initial set of examples.

Source Code.
A library’s source code is a precise specification of the

library. However, source code is not available for propri-
etary libraries. Furthermore, even if it is available, source
code does not distinguish between its effect (what it accom-
plishes) and its intent. This makes source code often be too
detailed. This detail makes updates to the library difficult,
since an implementer can never be sure what detail of algo-
rithms or data structures a client may have relied on. Such
violations of information hiding principles can also make it
difficult for the client to extract an easily remembered sum-
mary of the code’s effect, making source code less than ideal
for solving either the learning or the reference problem.

Tests.
Tests (in code form) for the library are not often used as

documentation by clients. Nevertheless, they are a kind of
weak specification, and are often produced in the course of
normal development. Unit tests can be considered a specifi-
cation of the unit being tested, since they precisely describe a
small amount of behavior. The weakness of unit tests is that
they do not cover all possible test cases, unless care is taken
to generalize them (e.g., by parameterization [18]). Corner
cases involving aliasing patterns are particularly hard to set
up and may be felt to be rare enough to not be worthy of
testing.

Larger system tests often have the complexity of applica-
tions and could serve as tutorial examples if they were also
designed to be understandable.

A problem with using testing code as documentation is
that, in imperative programming languages, there may be
a significant amount of state that is passed to the test im-
plicitly (e.g., in the heap), and this implicit state may be
obscure to a person reading the test. Similarly, there can
be effects (e.g., changes to the heap) that are hidden, for
good reasons (abstraction and information hiding), which
may make such tests difficult to understand.

2.3 Mathematical Approaches
Formal (i.e., mathematical) specifications can be more

general than test cases. For example, a predicate-based
specification of a method can be thought of as a general-
ization of all possible test cases. Thus formal notations can
specify more of the state space of a module than is easily
achieved with tests. Another advantage of formal notations
is that they can also be designed to call attention to all in-

3On the other hand, having a searchable set of proprietary
examples may be desirable for internal use in a business that
wants to gain a competitive advantage.

puts, outputs, and effects involved in a behavior, including
subtle changes in the heap.

Since formal notations are mathematical, they are usually
unambiguous and can be very precise. They can also be used
by automatic tools, such as test case generators or verifiers.

However, the price of these advantages is that the people
reading and writing formal specifications need some math-
ematical training. In particular, they have to be reason-
ably fluent in logic. It also seems helpful if they have a
background in functional programming, as they need to be
comfortable with describing changes to state (as opposed to
making changes to state). Some experience with using for-
mal notations is also necessary to choose the right level of
abstraction, so that specifications are not too detailed and
yet can still be used with the appropriate automatic tools.

Hoare-Style (Data) Specifications.
Most of my research has been with Hoare-style specifica-

tions, such as specifications of object-oriented classes using
invariants, and pre- and postconditions for each method.
Such specifications are good for answering reference ques-
tions about particular methods, but are not good at solving
problems related to the effect of long sequences of method
calls.

Hoare-style specifications also have some technical weak-
nesses. First, they are difficult to reason about when there is
a lot of aliasing, since the notation tends to make it easy to
confuse names and denotations. But there are various tech-
nical fixes (such as Separation Logic) for dealing with this
problem. Second, Hoare-style specifications that are written
using logics like first-order logic are also not very constrain-
ing of implementations in higher-order situations, such as
methods that call other methods (e.g., mapping a method
over the elements of an array). I favor the greybox approach
to solving this kind of specification problem [16].

Temporal (Control) Specifications.
Specifications written in temporal logic, such as CTL or

LTL [14] have somewhat complimentary advantages com-
pared to Hoare-style specifications. In particular, temporal
logics are very good at specifying (long or even infinite) se-
quences of operations or method calls. Such specifications
are also useful for describing properties of execution histo-
ries, such as absence of deadlock or lack of starvation. How-
ever, to facilitate their use in model checking, temporal logic
specifications often have very abstract (i.e., weak or nonex-
istent) descriptions of data values.

3. CONCLUSIONS
The main conclusion I draw from the above examination

of different documentation technologies is that none of them
is ideal. I have thus come to think that future documenta-
tion systems should combine the best features of each, and
that this will probably require specifications that use a com-
bination of technologies.

To get an idea of what this combination might look like,
consider the Z specification language [17]. Z was designed
from the start to be combined with natural language descrip-
tions, a feature that makes it easy to integrate Z into books,
lectures, and other natural language documentation. In this
way one can use natural language to give motivation and
perspective, and when it is useful, precisely describe some

213

concepts in formal notation. It may be that literate pro-
gramming [11] technology can also aid in the combination
of code, natural language, and specifications.

The connection between formal specifications and testing
can also be exploited more fully [7, 8, 19]. For example, it
is possible to use tests to aid proofs of correctness [6] or as
representations of regions of a program’s state space that
have been explored [1]. One can also use specification ideas
to make tests more general [18]. Conversely formal specifi-
cations can be used as test oracles [4, 15]. More generally,
combinations of static and dynamic approaches promise to
be fruitful, because their strengths and weaknesses are com-
plimentary [1, 3, 5].

I think there is also great potential in exploiting tests as
examples of proper usage of a library, but this is just a hunch.

There also seems to be considerable potential value in
the combination of Hoare-style and temporal logic specifica-
tions. The main advantage is that each kind of specification
is weak where the other is strong. However, the fruitful com-
bination of these two techniques may require some technical
innovations.

For solving the reference problem, indexing and searching
are traditional techniques that have been used with some
natural language technologies (e.g., books), but these could
be more systematically exploited with other technologies
(e.g., test cases or formal specifications).

Another thing that formal techniques can take from nat-
ural language techniques is the importance of rhetorical em-
phasis. Formal specifications are often very flat, and it seems
hard to emphasize some parts of the specification as partic-
ularly important to readers. But JML [13] includes some
features along these lines [12], which are designed to em-
phasize certain rhetorical points. For example, in JML one
can state examples in the formal specification and one can
also state redundant consequences of the specification as a
means to point out important facts to the reader. Still, for-
mal specification techniques are not as good as test cases
at describing the relative importance of certain behaviors.
That is, it is hard to say that certain input states are less
important than others, perhaps because they are less likely
to be produced by real users.

In summary, my hope is that software engineering research
can find economically viable ways to combine the many tech-
nologies available for documentation and specification of li-
braries, and that the combination will be more useful and
productive than each technology individually.

4. ACKNOWLEDGMENTS
The author’s work was supported in part by NSF grants

CNS 08-08913, CCF-0916350, and CCF-0916715. Thanks to
the anonymous reviewers for their comments and in partic-
ular for pointing out some work to cite on natural language
understanding. Thanks to Sumit Jha for comments on an
earlier draft.

5. REFERENCES
[1] N. E. Beckman, A. V. Nori, S. K. Rajamani, R. J.

Simmons, S. D. Tetali, and A. V. Thakur. Proofs from
tests. IEEE Transactions on Software Engineering,
36(4):495–508, July/August 2010.

[2] M. Campione and K. Walrath. The Java Tutorial
Second Edition: Object-Oriented Programming for the

Internet. The Java Series. Addison-Wesley, Reading,
MA, second edition, 1998.

[3] R. Cartwright and M. Fagan. Soft typing. ACM
SIGPLAN Notices, 26(6):278–292, June 1991.
Proceedings of the ACM SIGPLAN ’91 Conference on
Programming Language Design and Implementation
(Toronto, Canada).

[4] Y. Cheon and G. T. Leavens. A simple and practical
approach to unit testing: The JML and JUnit way. In
B. Magnusson, editor, ECOOP 2002 —
Object-Oriented Programming, 16th European
Conference, Máalaga, Spain, Proceedings, volume 2374
of Lecture Notes in Computer Science, pages 231–255,
Berlin, June 2002. Springer-Verlag.

[5] M. D. Ernst. Static and dynamic analysis: Synergy
and duality. In WODA 2003: ICSE Workshop on
Dynamic Analysis, Portland, OR, pages 24–27, New
Mexico State University, May 2003. Jonathan Cook.

[6] M. Geller. Test data as an aid in proving program
correctness. Commun. ACM, 21(5):368–375, May
1978.

[7] P. Godefroid and N. Klarlund. Software model
checking: Searching for computations in the abstract
or the concrete. In J. Romijn, G. Smith, and J. van de
Pol, editors, Integrated Formal Methods, 5th
International Conference, IFM 2005, Eindhoven, The
Netherlands, November 29 - December 2, 2005,
Proceedings, volume 3771 of Lecture Notes in
Computer Science, pages 20–32. Springer-Verlag, 2005.

[8] E. L. Gunter and D. Peled. Model checking, testing
and verification working together. Formal Aspects of
Computing, 17(2):201–221, 2005.

[9] E. Hill, L. Pollock, and K. Vijay-Shanker. Exploring
the neighborhood with Dora to expedite software
maintenance. In 22nd IEEE/ACM International
Conference on Automated Software Engineering
(ASE). IEEE/ACM, Nov. 2007.

[10] T. Jim. Yakker: A parser generator for network
protocol messages. PDF of talk, Nov. 2005.
http://www2.research.att.com/~trevor/talks/

yakker-njpls.pdf.

[11] D. E. Knuth. Literate Programming, volume 27 of
CSLI Lecture Notes. Center for the Study of Language
and Information, Stanford University, 1992.

[12] G. T. Leavens and A. L. Baker. Enhancing the pre-
and postcondition technique for more expressive
specifications. In J. M. Wing, J. Woodcock, and
J. Davies, editors, FM’99 — Formal Methods: World
Congress on Formal Methods in the Development of
Computing Systems, Toulouse, France, September
1999, Proceedings, volume 1709 of Lecture Notes in
Computer Science, pages 1087–1106. Springer-Verlag,
1999.

[13] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby,
D. R. Cok, P. Müller, J. Kiniry, P. Chalin, and D. M.
Zimmerman. JML Reference Manual. Available from
http://www.jmlspecs.org, Sept. 2009.

[14] Z. Manna and A. Pnueli. The Temporal Logic of
Reactive and Concurrent Systems. Springer-Verlag,
New York, NY, 1992.

[15] D. Peters and D. L. Parnas. Generating a test oracle
from program documentation. In Proceedings of

214

ISSTA 94, Seattle, Washington, August, 1994, pages
58–65. ACM Press, Aug. 1994.

[16] S. M. Shaner, G. T. Leavens, and D. A. Naumann.
Modular verification of higher-order methods with
mandatory calls specified by model programs. In
International Conference on Object-Oriented
Programming, Systems, Languages and Applications
(OOPSLA), Montreal, Canada, pages 351–367, New
York, NY, Oct. 2007. ACM.

[17] J. M. Spivey. Understanding Z: a Specification
Language and its Formal Semantics. Cambridge
University Press, New York, NY, 1988.

[18] N. Tillmann and W. Schulte. Parameterized unit tests
with unit meister. In ESEC/FSE’05, pages 241–244,
New York, NY, Sept. 2005. ACM.

[19] G. Yorsh, T. Ball, and M. Sagiv. Testing, abstraction,
theorem proving: better together! In L. L. Pollock and
M. Pezzè, editors, Proceedings of the ACM/SIGSOFT
International Symposium on Software Testing and
Analysis, ISSTA 2006, Portland, Maine, pages
145–156. ACM, July 2006.

215

