
Towards Software Health Management
with Bayesian Networks

Johann Schumann
SGT, Inc., NASA Ames

Johann.M.Schumann
@nasa.gov

Ole J. Mengshoel
Carnegie Mellon University

Ole.J.Mengshoel
@nasa.gov

Ashok N. Srivastava
NASA ARC

Ashok.N.Srivastava@nasa.gov

Adnan Darwiche UCLA
darwiche@cs.ucla.edu

ABSTRACT
More and more systems such as aircraft, machinery, and cars
rely heavily on software, which performs safety-critical op-
erations. Assuring software safety though traditional V&V
has become a tremendous, if not impossible task, given the
growing size and complexity of the software.

We propose that SWHM (SoftWare Health Management)
has the potential to increase safety and reliability of high-
assurance software systems. SWHM can build upon the ad-
vanced techniques from the area of system health manage-
ment to continuously monitor the behavior of software dur-
ing operation, quickly detect anomalies and perform auto-
matic and reliable root-cause analysis. Such a system would
not replace traditional V&V, but rather supplement it. The
information provided by the SWHM system can be used for
automatic mitigation mechanisms (e.g., recovery, dynamic
reconfiguration) or presented to a human operator for fur-
ther analysis. SWHM may also feature a key prognostic
capability, which can improve the reliability and availability
of the software system because it provides information about
soon-to-occur failures or looming performance bottlenecks.
In this paper, we discuss research challenges associated with
developing an SWHM system, and discuss how Bayesian net-
works (BN), a key technology used in advanced diagnostics
systems may be used for SWHM modeling.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging,
Diagnosis

General Terms
Reliability

Keywords
Health Management, Bayesian Network, Verification and
Validation

Copyright 2010 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

1. INTRODUCTION
In modern aircraft and other complex machinery, impor-

tant electrical, mechanical, and hydraulic components and
systems are managed by ISHM (Integrated System Health
Management) systems. These can detect, diagnose, predict,
and mitigate adverse events during the operation of the sys-
tem and can help increase the reliability, dependability, and
the life of the system while potentially also reducing mainte-
nance costs. With the help of such diagnostic and prognostic
techniques, appropriate mitigation strategies can be select-
ed. Example mitigation strategies include replacement, re-
pair, or switch to a redundant system.

Software Health Management, a relatively novel develop-
ment, will extend this concept to software systems. An
SWHM system continuously monitors the behavior of the
software and the interfacing hardware or sensor components
and can detect precursors to faults or failures in the system.
Using an abstract model of the software (e.g., a Bayesian
statistical model), the SWHM can detect unexpected behav-
ior, reason about its root cause (failure identification), and
perhaps even trigger failure repair or mitigation actions. A
similar mechanism could be used for prognostic purposes,
trying to reliably predict possible software and/or system
failures in the future.

In principle, an SWHM system could operate similar to a
traditional ISHM system, but would focus its attention on
software instead of hardware. However, there are substantial
differences between hardware and software systems:

• Many software errors do not develop when the soft-
ware is in operation but are introduced at some stage
of the software development cycle, as there are typi-
cally no ’wear-and-tear’ effects in software. Examples
include requirements errors, design flaws, or coding er-
rors, just to mention a few. If these are not detected
and removed during testing, they remain (dormant) in
the software system and can show up during operation.

• Failures in software often occur due to problematic in-
teroperation with hardware. Hardware systems (and
their sensors) might behave differently than expected,
and thus could cause software failure. Such a different
behavior could be introduced by accident during de-
velopment (e.g., a change in hardware is not reflected
in the software design), as a result of hardware fail-
ure (e.g., a broken sensor cable, or a disabled sensor),
or gradual degradation (e.g., signal noise increases be-

331

yond the specified level and causes the SW to behave
erratically). Likewise, interoperation with human op-
erators or other software systems can cause problems.

• In contrast to many hardware failures, which develop
gradually (e.g., slowly worsening decrease in oil pres-
sure due to a growing leak), most software failures oc-
cur instantaneously. The reason for this is that most
software is discrete (state machines, decision logic) and
failures occur, for example, by entering a wrong branch
in the software, not properly handling an exception, or
a division-by-zero. Proper modeling of software fail-
ures thus cannot directly use modeling techniques for
hardware, as these typically rely on linear or at least
continuous system behavior.

• Because many software systems interact with human
operators, it is possible that the human can engage the
system in an unexpected way due to the human mis-
understanding the entire state of the system. In aero-
nautical applications on Flight Management Systems
(FMS), this is called “mode confusion”. If a pilot ex-
periences mode confusion, he or she can interact with
the system in unanticipated ways. Although verifica-
tion and validation (V&V) of the FMS software can
anticipate many such interactions, it is possible that
the human operator could give a command which is
unanticipated for a given configuration of the FMS.

• Many hardware systems have highly complex physics-
based models, which are used to predict the behav-
ior of the system. These models can take the form
of differential equations, difference equations, or other
generative models based on physical laws. In general,
software systems do not obey such physical laws. It
is important to note, however, that the software sys-
tems themselves may be used to model or incorporate
physical laws such as the case for motion dependent
control systems. These models provide an interesting
intermediate point between the two extremes of pure
hardware systems with physical models and general
software systems

All these differences (and commonalities) between ISHM
of physical systems and software systems must be taken in-
to account when developing novel techniques for intelligent
software health management systems.

Some examples of major failures of safety-critical soft-
ware systems can illustrate what kinds of software errors
and problems an SWHM system has to cope with. In Ari-
ane V, several software modules from the smaller Ariane IV
had been re-used [32]. However, the range of certain sen-
sor values was larger (due to different physical dimensions
and construction), which led to an uncaught overflow er-
ror, causing the rocket to behave erratically and required its
destruction.

The recent incident with the NASA DART probe [24]
was mainly caused by software problems. One major is-
sue was that the GPS receiver was replaced just prior to
launch with a different model, with different noise and bias,
without proper adaptation of the software. Automatic error
correction in the navigation module caused wrong (biased)
position and velocity values to be used as reference, causing
the spacecraft to miss important trajectory points and to
bump into the target satellite.

On December 3, 1999, a robotic spacecraft known as the
Mars Polar Lander (MPL) was beginning descent into the
Martian atmosphere when mission control lost all contact
with the craft. An assessment [31] was made that spurious
signals from the lander’s legs gave a false indication that
the spacecraft had landed, resulting in a premature shut-
down of the descent engines and subsequent crash on the
surface. The interpretation of the signals from the lander
legs was likely performed in software that had been rigorous-
ly tested. Although the software had been tested, it behaved
unexpectedly due to signals that were unanticipated. This
incident shows that complex software can react in unantic-
ipated ways even after passing verification and validation
testing.

Although we do not claim that a SWHM system could
have prevented all of these software-related mishaps, it is
possible that similar issues could be detected or avoided us-
ing health management techniques.

Like all fault detection and monitoring systems, our SWHM
system will implemented as a piece of software itself. Safety
analysis has to ask: “Quis custodiet ipsos custodes?”
(Juvenal, “Who guards the guardians?”). This means that
SWHM systems must be at least as safe and dependable as
the software they monitor (“host software”).

2. SWHM GOALS
While the overall goal of SWHM is to extend and augment

traditional V&V for a full lifecycle protection of software
systems, thus ultimately enabling in-the-field assurance of
composed software intensive systems, SWHM needs to pro-
vide the following capabilities:

• SWHM needs to continuously monitor the software un-
der scrutiny. That software can be a compact piece of
embedded software, or a huge, distributed software-
rich system of systems, which might consist of hetero-
geneous components. It also must monitor the inter-
actions of the software with the hardware, as many
software faults originate (or are triggered) by anoma-
lies in software-hardware interactions.

• SWHM should provide model-based fault detection,
fault identification (root cause analysis) and decision
support (for mitigation systems or human operators).

• SWHM should provide prognostic capabilities for en-
hanced system reliability, availability, and performance.
SWHM will not only react on problems that already
occurred, but should be able to give future progno-
sis on performance (e.g., by predicting computational
bottlenecks), availability, and reliability (prognosis of
looming problems, e.g., memory leaks, overfull file sys-
tems, overloaded network connections).

• SWHM will be capable of detecting environmental chan-
ges and emerging behaviors, as those cannot be detect-
ed (by definition) during pre-deployment verification
and validation (V&V).

• SWHM will need to undergo rigorous V&V itself, as
the SWHM must be at least as reliable as the system
it monitors.

• SWHM models and reasoning capabilities must be able
to minimize the number of false positives (spurious
alarms) and false negatives (undetected failures).

332

• SWHM must be integrated seamlessly with tradition-
al V&V, as it is not intended to replace V&V but to
augment it for in-the-field software assurance. In par-
ticular, pre-deployment V&V will provide verification
credit. Also V&V information will be perused to im-
prove SWHM models.

3. SWHM TECHNOLOGY
The principal architecture of an SWHM system (Figure 1)

consists of four components: the system (SW and hardware)
to be monitored (the host system); a health model of the
system; the SWHM reasoning engine that performs failure
detection, diagnostics and prognostics; and components for
failure annunciation or failure mitigation. In the architec-
ture shown here, a key issue that arises is that the entire
closed-loop system (including the SWHM executive) must
meet stability and other control-oriented requirements and
also be certifiable. The composite system which includes
the hardware, SWHM executive, and aircraft controller is of
higher complexity due to the addition of the SWHM ex-
ecutive and the additional requirements that it poses on
the communication and computation environment. While
the architecture shown here depicts the SWHM system as
a single entity, in a real-world application it may itself be a
distributed system taking information from multiple sources
and performing reasoning on multiple computational plat-
forms. This additional complexity can come with significant
benefits. However, for real-world implementations, an over-
all cost-benefit analysis must be performed to justify the
added complexity for flight-critical systems. In the event
that each component of the architecture consists of certifi-
able components, it may be possible to demonstrate safety
improvements and potentially cost reductions through the
introduction of such a system.

While the SWHM architecture in Figure 1 specifically as-
sumes an aircraft, the more general problems of monitoring
the software of a cyber-physical system or an arbitrary soft-
ware system is also of interest. Of course, the goals and
requirements for different types of software systems vary,
and for example safety, real-time, and V&V requirements
are key in the aerospace setting.

Great progress has been made over the last decade, in
learning and reasoning using probabilistic graphical models,
including Bayesian networks (BN) and Markov networks. In
addition to being well-suited to automated analysis, these
graphical models are also amenable to visualization1. While
most BN inference problems are computationally hard in
the general case, efficient algorithms have been developed
[6, 17] that open the path toward successful applications in
a wide range of automated reasoning areas, for example in
model-based diagnosis (e.g., [21]), sensor validation [2, 22],
or intelligent data analysis [15, 28].

In the following, we will focus on SWHM modeling and
reasoning aspects, as their scalability is particularly impor-
tant for large-scale and heterogeneous software systems. Un-
der the assumption that modeling and reasoning is done us-
ing Bayesian networks and arithmetic circuits [6, 26], we will
also briefly discuss existing techniques and research needed
to improve V&V of SWHM.

1e.g., http://reasoning.cs.ucla.edu/samiam

Executive

P
ilo

t
In

pu
t

(Software)
AC Controller

(C) (S) (I)
(H)

(F)

(O)

SWHM
Model

SWHM

Figure 1: Principal architecture for SWHM for an
aircraft controller: pilot input and feedback (F) pro-
duce actuator output (O). Hardware health sensors
(H), signal quality data (I), and software quality da-
ta (S) go into the SWHM system, which produces a
recovery/mitigation signal (C).

4. SWHM RESEARCH DIRECTIONS
Whereas ISHM is a mature field, research on the specific

topic of software health management is still in its infancy.
The 2009 SHM workshop [16], held during the Conference
on Space Mission Challenges for Information Technology
(SMC-IT 2009), gives an overview of some of the state-of-
the-art approaches. Monitoring of software, while it is in op-
eration, is obviously an important topic of research. Extend-
ing the notion of runtime monitors for runtime verification
enables the designer to explore possible fault states of the
software in advance (see [33, 8]). The dynamic monitoring
of highly reliable and redundant software poses its own chal-
lenges (e.g., [12]). Other SWHM research focuses on spe-
cific software architectures that are particularly amenable
for SWHM (e.g., [9]). Some research describes SWHM in
architectures that conform to the ARINC 653 standard [1]
while others discuss the automated generation of fault trees
[18]. A process-oriented approach to regularly check on the
health of a (large) software system has been discussed in
[27]. Here, the goal is that regular (non-automated) health
checks improve the technical condition of the software and
has positive economic effectiveness.

In the rest of this section, and in the context of the SWHM
architecture shown in Figure 1, we discuss important re-
search directions that need to be addressed jointly by the
software engineering and Bayesian network communities.

4.1 Advanced SWHM Modeling
Many software systems include a wide range of different

and heterogeneous components along many dimensions, e.g.,
embedded vs. ground SW, autonomous vs. human-in-the-
loop. As a consequence of the uncertain, heterogeneous, and
interacting nature of these systems, as well as their environ-
ments, there is a need for supporting probabilistic modelling
and analysis paradigms, techniques, and tools. Specifical-
ly, we emphasize large-scale probabilistic graphical models,
in particular hierarchical and compositional Bayesian net-
works, and algorithms for probabilistic inference and ma-
chine learning using graphical models to ensure scalability
to large software systems. These Bayesian graphical mod-
els allow the designer to specify large models (important
for large software systems) in a hierarchical and structured
way and use different levels of abstraction for the individual
SW components. For example, Bayesian networks have been

333

used to diagnose problems in the operation of an operating
system [4].

In this context, these are a few interesting research direc-
tions:

• Amount of sensing and sensor placement: where in the
SW and HW stack should BN sensors be placed, how
many are needed, and what are the opportunities for
active diagnosis?

• Bayesian network construction: what is, for SWHM,
the optimal approach to BN construction—auto-gene-
ration, machine learning, manual construction, or a
hybrid approach?

• Higher-level modeling and analysis: what are the op-
portunities for developing and extending approaches
to re-use of BNs, BN patterns, object-orientated BNs
(OOBNs), and probabilistic model checking?

We believe that it is important to pursue research regard-
ing, on the one hand, probabilistic modeling and reasoning
approaches (including dynamic Bayesian networks), and on
the other hand, probabilistic model checking and more gen-
erally formal methods that involve probabilities. In particu-
lar, there is a need to integrate dynamic Bayesian networks
research and research on probabilistic model checking based
on Markov chains, as previous research efforts have largely
been pursued independently and in different research com-
munities (Bayesian networks, software engineering, and for-
mal methods).

4.2 SWHM with Arithmetic Circuits
Based upon sensor signals and health monitor signals, the

SWHM engine tries to disambiguate the information and lo-
cate the failures that have occurred, using a representation
of a model of the host software. The reasoning engine often
also makes decisions on how to overcome the failure or to
recover the system. Because most inference problems need-
ed for fault detection and identification are computationally
expensive, we propose to use techniques that compile BNs
into a data-structure, which allows highly optimized and ef-
ficient processing. For Bayesian networks, the fourth author
has developed a translation of BNs into arithmetic circuits
[3, 5, 6]. Powerful optimizations keep these data structures
compact, so that reasoning can be performed over large mod-
els. Future research will investigate the compilation of het-
erogeneous Bayesian network models, Additional interesting
research questions that need to be addressed include:

• Interface between SWHM and host SW: what is the
best way to structure this interaction—aspect-oriented
techniques, message-passing, or something else?

• Mitigation: automated versus manual: should SWHM
play a very active mitigation role or more of a a sup-
porting role for human analysis?

• Parametrization of compilation from BN to AC: giv-
en the wide range of existing and emerging SW and
HW platforms (the emerging mobile-and-cloud archi-
tecture; varying computer architectures including multi-
core CPUs and graphics processing units (GPUs)), how
should one support the generation of widely varying
ACs in terms of their memory and computational re-
quirements?

4.3 V&V of SWHM Systems
A SWHM system as discusses above will be implement-

ed as a piece of software. Based on our discussion above,
it is obvious that the SWHM system is highly safety criti-
cal. False alarms or undetected faults can have severe conse-
quences, ranging from unnecessary switching to redundant
components to potential loss of life.

Therefore, all SWHM system components have to under-
go rigorous V&V as well as certification. In general, this in-
volves two major parts: (a) V&V of the SWHM model, i.e.,
assuring that the model reflects the software system and its
failures/faults correctly and sufficiently, and (b) V&V of the
algorithm and implementation of the proper SWHM system,
i.e., the reasoning engine and executive that will be running
during the operation of the overall system.

As discussed earlier, our SWHM models are represented
as Bayesian networks, which can be compiled into arithmetic
circuits of bounded size [6], which enables the SWHM engine
to perform efficient reasoning. However, this executive is a
highly non-standard algorithm, which means that specific
V&V techniques are needed. In particular, the following
research questions need to be addressed:

• Correctness and completeness of model compilation:
will reasoning with arithmetic circuits always yield the
same results as reasoning over the BN?

• Functional correctness of the ISHM reasoning execu-
tive: does the implementation of the executive perform
the right kinds of reasoning operations on the compiled
model?

• Runtime and memory limitations: can the run-time
for reasoning be limited (real-time guarantee)? Can
the memory requirements for reasoning be limited up-
front, such that no dynamic memory handling is nec-
essary?

For V&V, advanced verification and validation tools, like
the Java PathFinder model checker2, automatic generation
of test-cases with symbolic PathFinder [25], compositional
verification [11], and parametric testing [13, 29] will provide
a basis. It is expected that techniques for the verification
and validation of system health management software (e.g.,
[19, 30]) can be adapted to SWHM.

5. CONCLUSIONS
SWHM has the potential to become a key technology for

detecting, diagnosing, predicting, and mitigating the ad-
verse events during the operation of safety-critical software
systems. The use of Bayesian networks for modeling and
model-compilation into arithmetic circuits offers advantages
(like well-defined semantics, wide range of techniques, tools,
and algorithms, as well as exact compilation), which makes
their use in monitoring the health of safety-critical and em-
bedded software possible. Approaches for V&V and certifi-
cation of SWHM can be based upon advanced verification
tools (like model checking), but substantial research will be
necessary to address these issues.
Acknowledgements This work is in part supported by
the NASA Aviation Safety Program IVHM project (NRA
NNX08AY50A).

2http://javapathfinder.sourceforge.net

334

6. REFERENCES
[1] M. Barry and G. Horvath. Goal-based Flight Software

Health Management Services. In SHM 2009 [16], 2009.

[2] T. W. Bickmore. A probabilistic Approach to Sensor
Data Validation. In AIAA, SAE, ASME, and ASEE
28th Joint Propulsion Conf. and Exhibit, 1992.

[3] M. Chavira and A. Darwiche. Compiling Bayesian
networks using variable elimination. In Proc.
IJCAI-07, pages 2443–2449, 2007.

[4] G. Cooper, D. Heckerman, and C. Meek. A Bayesian
Approach to Causal Discovery. Microsoft Research
Technical Report MSR-TR-97-05, 1997.

[5] A. Darwiche. A differential Approach to Inference in
Bayesian Networks. JACM, 50(3):280–305, 2003.

[6] A. Darwiche. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, 2009.

[7] M. desJardins, P. Rathod, and L. Getoor. Bayesian
Network Learning with Abstraction Hierarchies and
context-specific Independence. In Proc. ECML-2005,
volume 16, 2005.

[8] W. Dong, M. Leucker, and C. Schallhart. Impartial
anticipations in runtime verification. In 6th Int. Symp.
on Automated Technology for Verification and
Analysis (ATVA’08), vol 5311 LNCS. Springer, 2008.

[9] A. Dubey, G. Karsai, R. Kereskenyi, and
M. Mahadevan. A Real-Time Component Framework:
Experience with CCM and ARINC-653. IEEE
International Symposium on Object-Oriented
Real-Time Distributed Computing, 2010.

[10] N. Friedman and M. Goldszmidt. Learning Bayesian
Networks with local Structure. In Proc. UAI-96, pages
252–262, 1996.

[11] D. Giannakopoulou and C. S. Pasareanu. Interface
Generation and compositional Verification in Java
PathFinder. In FASE, vol 5503 of LNCS, pages
94–108. Springer, 2009.

[12] A. Goodlow and L. Pike. Toward Monitoring
fault-tolerant embedded Systems. In SHM 2009 [16],
2009.

[13] K. Gundy-Burlet, J. Schumann, T. Menzies, and
T. Barrett. Parametric Analysis of ANTARES
Re-entry Guidance Algorithms using advanced Test
Generation and Data Analysis. In iSAIRAS, 2008.

[14] Y. Guo, D. Wilkinson, and D. Schuurmans. Maximum
Margin Bayesian Networks. In Proc. UAI, page 233,
2005. AUAI Press.

[15] P. Jones, C. Hayes, D. Wilkins, R. Bargar, J. Sniezek,
P. Asaro, O. J. Mengshoel, D. Kessler, M. Lucenti,
I. Choi, N. Tu, and J. Schlabach. CoRAVEN:
Modeling and Design of a Multimedia intelligent
Infrastructure for collaborative Intelligence Analysis.
In Proceedings of the International Conference on
Systems, Man, and Cybernetics, pages 914–919, 1998.

[16] G. Karsai, editor. 1st International Workshop on
Software Health Management (SHM 2009). ISIS,
Vanderbilt University, 2009.

[17] D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles And Techniques. MIT Press, 2009.

[18] T. Kurtoglu, R. Lutz, and A. Patterson-Hine. Using
auto-generated Diagnostic Trees for optimized Fault
Handling. In SHM 2009 [16], 2009.

[19] A. E. Lindsey and C. Pecheur. Simulation-based
Verification of autonomous Controllers via Livingstone
Pathfinder. In TACAS 2004, vol 2988 of LNCS, pages
357–371. Springer, 2004.

[20] O. J. Mengshoel. Understanding the Role of Noise in
Stochastic Local Search: Analysis and Experiments.
Artificial Intelligence 172:8–9, pages 955–990, 2008.

[21] O. J. Mengshoel, A. Darwiche, K. Cascio, M. Chavira,
S. Poll, and S. Uckun. Diagnosing Faults in electrical
Power Systems of Spacecraft and Aircraft. In Proc.
IAAI-08, pages 1699–1705, 2008.

[22] O. J. Mengshoel, A. Darwiche, and S. Uckun. Sensor
Validation using Bayesian Networks. In iSAIRAS,
2008.

[23] O. J. Mengshoel, D. Roth, and D. C. Wilkins.
Portfolios in Stochastic Local Search: Efficiently
Computing Most Probable Explanations in Bayesian
Networks. JAR (accepted), 2010.

[24] NASA. Overview of the DART Mishap Investigation
Results. http://www.nasa.gov/pdf/
148072main_DART_mishap_overview.pdf, 2006.

[25] C. S. Pasareanu and W. Visser. Symbolic Execution
and Model Checking for Testing. In Haifa Verification
Conf., vol 4899 of LNCS, pages 17–18. Springer, 2007.

[26] J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, 1988.

[27] M. Pizka and T. Panas. Establishing economic
Effectiveness through Software Health Management.
In SHM 2009 [16], 2009.

[28] C. C. Ruokangas and O. J. Mengshoel. Information
filtering using Bayesian networks: Effective user
interfaces for Aviation Weather Data. In Int.
Conference on intelligent User Interfaces, pages
280–283, 2003.

[29] J. Schumann, A. Bajwa, and P. Berg. Parametric
Testing of Launch Vehicle FDDR Models. In AIAA
Space, 2010.

[30] J. Schumann, A. Srivastava, and O. Mengshoel. Who
guards the Guardians? — toward V&V of Health
Management Software (short paper). In Runtime
Verification 2010, vol 5418 LNCS. Springer, 2010.

[31] P. Wilhide. Mars Program Assessment Report
Outlines Route to Success,
http://mars.jpl.nasa.gov/msp98/news/news71,
2000.

[32] Wired.com: ”History’s Worst Software Bugs”, 2009.

[33] C. Zhao, W. Dong, J. Wang, P. Sui, and Z. Qi.
Software active online Monitoring under anticipatory
Semantics. In SHM 2009, 2009.

335

http://www.nasa.gov/pdf/
148072main_DART_mishap_overview.pdf
http://mars.jpl.nasa.gov/msp98/news/news71

	Introduction
	SWHM Goals
	SWHM Technology
	SWHM Research Directions
	Advanced SWHM Modeling
	SWHM with Arithmetic Circuits
	V&V of SWHM Systems

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

