
1

Multi-Framework Multi-Technology Software Development and Certifica-

tion of Dynamic Behavior

Introduction
The reality of information technology today is that software systems in the foreseeable future will a) be

more dynamic and flexible, b) have to utilize an increasing number of technological advances in both

hardware and software, c) be intertwined with increasingly more essential services and critical functions,

and d) be composed of COTS components of diverse origin and pedigree. There is a challenge to ensure

that the increase in capabilities and flexibility needed by future software systems does not come with a

corresponding increase in complexity and unpredictability that limits our ability to reliably build, certify,

and deploy them. There remain significant gaps in currently available technical capabilities that prevent

system owners, operators and integrators from properly developing and certifying systems with the flex-

ibility they need in order to be deployed in the dynamic environments of today and as envisioned for fu-

ture. Any 5 to 10 year research plan in the area of information technology must attempt to bridge this

capability gap. In particular, two topic areas stand out that need immediate attention: i) complexity of

multi-framework and multi-modal system development, ii) certification of dynamic behavior.

Multi-framework Multi-technology System Development
The current trend of Service Oriented Architectures (SOA) and Software as a Service (SaaS) will continue in

the near future, implying that new IT capabilities will be composed rather than developed as collections of

homogeneous components. Individual components are likely to be developed (and tested) using a wide

range of technology elements including different programming languages, development environments,

supporting libraries and even programming paradigms (e.g., publish-subscribe vs. point to point). It will

not be uncommon in a system where C code embedded in VB scripts associated with cells in an Excel

spreadsheet that is populated by scanning online data sources be visualized with Java/Google maps and

delivered to your browser via web services. Driven by forces in the globalized economy, it would be hard

to ascertain the level of testing each of the components underwent or the environments in which each

component was tested—it may even be impossible to ascertain the origin of the components. While

technology is facilitating cooperation and coexistence of these kinds of multi-paradigm multi-technology

components that cross from one application domain to another, human stakeholders face a tremendous

challenge—the learning curve for these different paradigms and technologies remain steep, and it is not

easy for an expert to adapt to new software domains. A software engineer who is an expert in web ser-

vices will not be able to easily grasp the C/VB intricacies that might be quite natural to an Excel jockey.

With every new wave of technology a significant wealth of acquired human expertise becomes obsolete

and needs to be reacquired. Either human stakeholders need to be brought up to speed (through training

or hiring), which incurs cost and delay or the organization makes a conscious decision to remain with old-

er generations of technology (which may prove costly from another perspective where newer technolo-

gies may offer more efficient solutions). A third option entrusts outsiders with critical responsibilities

which incurs both cost and additional risks. It is time to invest in new research that focuses on reducing

The opinions and positions in the white papers and comments posted on this web site are those of the submitters only and do not necessarily represent those of the Federal government,
the NITRD program and its participating agencies, or the National Coordination Office.

2

the learning curve associated with change. The changes to be investigated by the multi-framework and

multi-modal system development are at various levels ranging from programming language and software

libraries, to software engineering and software domain. Recent advances in semantic metadata and mark

up offers a potential solution for conveying abstract program structure, data flow and semantics. It is fo-

reseeable that source or intermediate code (such as Java byte code and MS CIL) can be annotated to carry

structural, dataflow and even semantic information described in terms of information technology ontolo-

gy. Automated tools can then be used on the annotated source or byte code to extract such descriptions

and present it to the stakeholder or to check compliance of vendor/stake holder specified invariants

about structure, flow or semantic. Code-generation tools can generate code from constructs involving

these high level structures and flow in the desired programming language, for a specific software devel-

opment environment or with respect to specific libraries for run time analyses and checking. The goal is

not to verify units of functionality or generate the code for entire functional components, which distin-

guishes this research from prior automated program verification or code-generation work.

Certification of Dynamic Behavior
There has long been a need to certify software for deployment in certain environments, such as those

that deal with life-critical, safety-critical, financial, space, and military environments. Current focus on cer-

tification/accreditation of software primarily focuses on process—how the software is constructed—and

testing. Many of the techniques used for certification of software are essentially risk assessment ap-

proaches, convincing a certification authority to accept the risk that the software is correct by document-

ing the process by which it was built and the thoroughness of its testing. This has led to two trends for

software needing certification: (1) building stovepiped software from scratch because reusing open-

source, off-the-shelf, or third-party software presents difficulties in certifying the resulting system; and (2)

developing static, inflexible software because of the increased complexity in certifying dynamic, flexible

systems. However, looking forward to future systems for the next 5-10 years and beyond, these trends

cannot continue. As stated above, it is becoming increasingly critical to build new systems by composing

existing components and services. Before too long, it will simply not be cost effective or feasible to build

new systems from scratch (and may already not be). Furthermore, certified systems are no longer dep-

loyed only in the closed, embedded environments of yesterday. Systems are increasingly internetworked,

deployed in unpredictable environments, and deployed for longer lifetimes, which means that they must

be flexible to handle dynamic interconnections, inputs, environmental conditions, and unforeseen condi-

tions and interactions. Systems of the future simply will not be able to certified using a process that re-

quires documentation of the creation of every line of code, or the enumeration of and testing of every

possible state it can enter. Research In new approaches to software certification—approaches more

suited to composed and dynamic systems—needs to be included in the 5 to 10 year information technol-

ogy research plan. Promising areas of research include looking at automated annotation of software com-

ponents and services with metadata describing their performance, QoS, provenance, security, and other

characteristics to aid in their reuse; safe composition techniques that allow software to be reused, but

limits its ability to misbehave in the integrated system; proof carrying code; open-source certified real-

time operating systems; software isolated processes; and composition languages, frameworks, and tools.

The opinions and positions in the white papers and comments posted on this web site are those of the submitters only and do not necessarily represent those of the Federal government,
the NITRD program and its participating agencies, or the National Coordination Office.

