Federal Cybersecurity Research and Development Program: Strategic Plan
Federal Cybersecurity Research and Development Program: Strategic Plan

Dr. Douglas Maughan
Division Director, Cyber Security Division, Science & Technology Directorate, Department of Homeland Security (DHS S&T)

Dr. Carl Landwehr
Program Director, Trustworthy Computing Program, National Science Foundation (NSF)

Brad Martin
S&T Lead for Cyber
Office of the Director of National Intelligence/National Security Agency (ODNI/NSA)

Presented by Federal NITRD Program

May 25, 2011
Claremont Hotel
41 Tunnel Road
Berkeley, California
NITRD Program

♦ Purpose
 – The primary mechanism by which the U.S. Government coordinates its unclassified Networking and IT R&D (NITRD) investments
 – Support NIT-related policy making in the White House Office of Science and Technology Policy (OSTP)

♦ Scope
 – Approximately $4B/year across 14 agencies, seven program areas
 – Cyber Security and Information Assurance (CSIA)
 – Human Computer Interaction and Information Management (HCI&IM)
 – High Confidence Software and Systems (HCSS)
 – High End Computing (HEC)
 – Large Scale Networking (LSN)
 – Software Design and Productivity (SDP)
 – Social, Economic, and Workforce Implications of IT and IT Workforce Development (SEW)
NITRD Structure for Cybersecurity R&D Coordination

- OSTP
- OMB
- National Science and Technology Council
- NITRD Subcommittee
 - National Coordination Office for NITRD
 - National security systems R&D
 - Cybersecurity R&D Senior Steering Group
 - Special Cyber Operations Research and Engineering (SCORE) Interagency Working Group
 - Cyber Security and Information Assurance Interagency Working Group (CSIA IWG)
 - Senior representatives from agencies conducting NIT R&D
 - Senior representatives from agencies with national cybersecurity missions
 - Program managers with cybersecurity R&D portfolios
Federal Cybersecurity R&D
Strategic Thrusts

- Research Themes
- Science of Cyber Security
- Transition to Practice
- Support for National Priorities
R&D Coordination Through Themes

- Theme ≠ Hard Problem
- To compel a new way of operating / doing business
- To attack underlying causes to bring about changes
- To provide shared vision of desired end state
- Established through robust community discussion of what matters
- Recognizes that independent thinking is vital to good research
Research Themes

Initial Themes (2010)

- Tailored Trustworthy Spaces
 - Supporting context specific trust decisions
- Moving Target
 - Providing resilience through agility
- Cyber Economic Incentives
 - Providing incentives to good security

New Theme (2011)

- Designed-in Security
 - Developing and evolving secure software systems

Annually re-examine themes, enrich with new concept, provide further definition or decomposition
Tailored Trustworthy Spaces

In the physical world, we operate in many spaces with many characteristics

• Home, school, workplace, shopping mall, doctor’s office, bank, theatre

• Different behaviors and controls are appropriate in different spaces

Yet we tend to treat the cyber world as a homogenous, undifferentiated space

TTS: a flexible, distributed trust environment that can support functional, policy, and trustworthiness requirements arising from a wide spectrum of activities in the face of an evolving range of threats
TTS Paradigm

- Users can select/create different environments for different activities satisfying variety of operating capabilities
 - Confidentiality, anonymity, data and system integrity, provenance, availability, performance

- Users can negotiate with others to create new environments with mutually agreed characteristics and lifetimes

- Must be able to base trust decisions on verifiable assertions
Moving Target

- Controlled change across multiple system dimensions to:
 - Increase uncertainty and apparent complexity for attackers, reduce their windows of opportunity, and increase their costs in time and effort
 - Increase resiliency and fault tolerance within a system
Moving Target Paradigm

- All systems are compromised; perfect security is unattainable
- Objective is to continue safe operation in a compromised environment, to have systems that are defensible, rather than perfectly secure
- Shift burden of processing onto attackers
Cyber Economics & Incentives

- A focus on what impacts cyber economics and what incentives can be provided to enable ubiquitous security:
 - New theories and models of investments, markets, and the social dimensions of cyber economics
 - Data, data, and more data with measurement and analysis based on that data
 - Improved SW development models and support for “personal data ownership”
CEI Paradigm

- Promotion of science-based understanding of markets, decision-making and investment motivation
 - Security deployment decisions based on knowledge, metrics, and proper motivations
 - Promote the role of economics as part of that understanding

- Creation of environments where deployment of security technology is balanced
 - Incentives to engage in socially responsible behavior
 - Deterrence for those who participate in criminal and malicious behavior
Brad Martin
ODNI/NSA
Designed-in Security

- New research theme
- Designing and developing SW systems that are resistant to attacks
- Generating assurance artifacts to attest to the system’s capabilities to withstand attacks
Designed-in Security Paradigm

- Require verifiable assurance about system’s attack-resistance to be natively part of the SW design, development, and evolution lifecycle
- Enable reasoning about a diversity of quality attributes (security, safety, reliability, etc.) and the required assurance evidence
- Stimulate further developments in methods and tools for detecting flaws in SW
Software System Development Today: Assertions without Proof

- Programmers are expensive
- Tools are used to economize programmer productivity
- Programs grow in pieces from many sources
- Assuring security properties of a system of programs is very difficult
- Most systems of programs are low assurance
- High assurance programs are changed reluctantly
Progress: Dynamic Analysis

NASA Symbolic Java PathFinder

<table>
<thead>
<tr>
<th>Year</th>
<th>LOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>500</td>
</tr>
<tr>
<td>2008</td>
<td>5000</td>
</tr>
<tr>
<td>2010</td>
<td>60000</td>
</tr>
</tbody>
</table>
Progress: Theorem Proving

ACL2 progress

Number of Theorems
Number of Definitions and Theorems
Total Byte Count (KB)

Numbers by J Moore, Matt Kaufmann, Warren Hunt, UT Austin
What is needed to bring these advances to bear on system security?

Tools that
- Generate assurance evidence as a system is built
- Can be easily understood and used by real programmers (and yield benefits they can see)
- Can support integration of evidence about various components
- Can be re-applied easily as systems evolve and adapt
Some Designed-In Security Research Challenges

- Mathematically sound techniques to support combination of models and composition of results from separate components
- Analysis techniques to enable traceable linking among diverse models and code
- Language design, processing, and tools that can provide high assurance for modular, flexible systems
- Team and supply chain practices to facilitate composition of assurance in the supply chain
- Tools to support assurance evidence management
- Learning what incentives (e.g. ability to quantify results) might motivate the use of these tools
Carl Landwehr
NSF
Federal Cybersecurity R&D Strategic Thrusts

- Research Themes
- Science of Cyber Security
- Transition to Practice
- Support for National Priorities
Science of Cyber Security

- A strategic research priority on the *science of security* to
 - Organize the knowledge in the field of security
 - Investigate universal concepts that are predictive and transcend specific systems, attacks, and defenses
 - Resulting in a cohesive understanding of underlying principles to enable investigations that impact large-scale systems
 - Enable development of hypotheses subject to experimental validation
 - Support high-risk explorations needed to establish such a scientific basis
 - Form public-private partnerships of government agencies, universities, and industry
Security Science

Today

- Mature **Crypto** Science
 - Adversary Models
 - Work Factor Metrics
 - Tempest, Physical Eng’g, etc.
- Formal Analysis Technology
 - Correctness Techniques/Tools
 - Protocol Verification
 - Efficient State Space Analysis
- Ad Hoc Cyber Engineering
 - Informal principles
 - Rudimentary Adversary Models
 - Process oriented Metrics
- Fragmented SoS Community

Future

- Mature **Cyber Security** Science
 - Formal Cyber Adversary Models
 - Cyber Security Metrics
 - Design & Implementation Support
- Objective Evaluation Techniques
 - Rigorous Toolset
 - Repeatable
- Trust Engineering Methodology
 - Construction/Composition Tools
 - Principled Design
 - Formal Discipline
- Coordinated SoS Community
 - Persistent, Self sustaining
 - Collaborative Structures (VO, Interest Grps)
Science of Cyber Security Questions

❖ What can we take from other sciences?
 – Are there any “laws of nature” in cyberspace that can form the basis of scientific inquiry in the field of cyber security?
 – Are there specific mathematical abstractions or theoretical constructs that should be considered?
 – Are there philosophical/methodological foundations of science that the cyber security research community should adopt?

❖ What sciences can we leverage?
 – Which scientific domains and methods, such as complexity theory, physics, theory of dynamical systems, network topology, formal methods, discrete mathematics, economics, social sciences, etc. can contribute to a science of cyber security?
Science of Cyber Security Questions (2)

- What is measurable in cyber security?
 - Currently security measures are very weak
 - How can we improve our ability to quantify cyber security?

- What is the role of experiments?
 - How do we structure efforts to do meaningful experiments?

- What theories can we expect?
 - How can we develop functional theories concerning complex computational processes?
 - How can we develop sound theories of the users and their interactions with the systems?
 - How can we develop sound theories of the adversary?
How do we account for the human element in security?

- Nature just exists, but adversaries cheat and use strategies to creatively violate models and assumptions.
- For any model of computer security, an adversary only needs to attack successfully one assumption of the model to subvert the security.

We need better models for analyzing how to achieve desired functions in systems with damaged and degraded or partial capabilities.

- Models of security tend to be binary (secure/unsecure) and localized within boundaries or abstraction layers.
- We need ways to reason about uncertainty and results within tolerances.
Science of Cyber Security Questions (4)

- What are the impediments to advancing a scientific basis for cyber security?
- What measures and metrics can help us assess progress?
- Is there a special role for Government?
Some Potential Science of Security Research Topics

- Methods to model adversaries
- Techniques for component, policy, and system composition
- A control theory for maintaining security in the presence of partially successful attacks
- Sound methods for integrating the human in the system: usability and security
- Quantifiable, forward-looking, security metrics (using formal and stochastic modeling methods)
- Measurement methodologies and testbeds for security properties
- Development of comprehensive, open, and anonymized data repositories
Doug Maughan
DHS
Transition to Practice

- Concerted effort to get results of federally funded research into broad use
 - Integrated demos
 - Conferences and workshops
 - “Matchmaking” efforts
 - Among Agencies
 - Between research and product
 - Potential funding for last mile
Support for National Priorities

- **Goals**
 - Maximize cybersecurity R&D impact to support and enable advancements in national priorities

- **Examples of Supported National Priorities**
 - Health IT
 - Smart Grid
 - Financial Services
 - National Strategy for Trusted Identities in Cyberspace (NSTIC)
 - National Initiative for Cybersecurity Education (NICE)
FY 2012 Budget Proposal / Cybersecurity R&D

- FY 2012 Budget Proposal / Cybersecurity R&D
 - Requested increase of 35% for cybersecurity research, development, and education ($407M FY10 to $548M FY12)

- Highlights
 - New NSF programs in the science of cybersecurity and game-changing research
 - Increased DOE investment in industrial control-system cybersecurity
 - New DARPA initiatives in information assurance, survivability, security by design, and insider threat mitigation
 - New NIST support for the National Initiative for Cybersecurity Education (NICE) and for the National Strategy for Trusted Identities in Cyberspace (NSTIC)
 - Increase of 51% in cybersecurity R&D budget at DHS S&T
Summary

- Coordinated effort among government agencies
- Focus on game-changing themes
 - Encourages research collaborations based on tangible topics and desired future capabilities
- Strategic Plan for Federal Cybersecurity R&D Program
 - To be released soon, followed by a public comment period
For More Information

Tomas Vagoun, PhD
CSIA IWG Technical Coordinator

National Coordination Office for
Networking and Information Technology Research and Development
Suite II-405, 4201 Wilson Blvd.
Arlington, VA 22230
Tel: (703) 292-4873
vagoun@nitrd.gov

http://www.nitrd.gov
http://cybersecurity.nitrd.gov