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l. Introduction Il. Model-Assisted Design?

* randomized trials are methodologically justified in order to achieve an model:
. . . . . . 2
unbiased estimate in causal inference, however, an estimator even unbiased Xi | gi ~ N(pg,;,07) i community that node i belongs to
can be inefficient if it has a large variance, Y;(0) | g;, A~ N (hom((Xj)jEN/}) + Bointrf((zj)jej\/})y’)/2) A :adjacency matrix
* standard difference-in-means estimator using Bernoulli or complete Yi(1) = Y;(0) + N;/N; : neighborhood of node i in-/ex- cluding i itself
randomization outputs large variance estimates and the variance is even : Z T :additive causal effect
larger on networks, where the systematic relation among units can increase estimator (direct effect):
the variance of inferences through mechanisms such as Homophily and #Y|Z) = Z Yizi Yi(1-Z2) (indirect effect is removed.)
interference, L Te
e to reduce the variance of estimators, we restrict the randomizations using a objective:
model-assisted design. MMSE(#) = E[(r — #)?] = E[MSE(? | 2)]

= E[bias(7 | 2)* + var(7 | Z)] (1)

design: minimizing the mean squared error using simple rule-based designs or using
MCMC approach.

lll. Rule-based Designs and Results
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g, G o e o o0 oo © o0 | The mean and standard error of average treatment effect (ATE) using a difference-in-means estimator through different
o O o Q- o O- O 0O g randomizations (results are presented only for IH model). The Alg. 1 is the algorithm corresponding to the rule (IH-de) and the Alg. 2
o o ° o o ° is the Metropolis—Hastings algorithm to minimize Eqg. (1). In Alg. 1, we select the assighment corresponding to minimum conditional
© ' © oo ° o ' © 06 o bias in Eq. (1) among 20 randomizations (a rerandomization technique). Other randomizations are Bern: Bernoulli randomization,
Comp: complete randomization, CompCom: complete randomization in cluster level, CompDeg: complete randomization in degree
quantile strata, and CompDegCom: complete randomization in the degree quantile strata for each cluster level.
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V. Conclusion
 due to the limitations of two traditional paradigms of design-based and model-
based, the new mixed approach is taking advantages of both to introduce novel
restricted randomizations with desired properties such as unbiasedness and e, 090 .y
minimum variance for difference-in-means estimator, T

* the proposed method is useful for developing model-assisted design strategies
for estimating other causal effects in more complicated settings,

* acrucial feature of the proposed model is that the computation of marginal MSE
is analytically tractable, and we can use the results for sample size calculations.
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