CIFellows 2020-2021

Computing Innovation Fellows

EAFFeL: Ensuring Integrity for Federated Learning

Amrita Roy Chowdhury, University of California, San Diego

1. Problem Setting

Federated Learning (FL) is a **decentralized** learning paradigm with **multiple clients** coordinated by a **single server**.

Each client's raw data is stored locally. Server wants to train a global model \mathcal{M} on the joint dataset.

For each round of training:

- Server broadcasts the current parameters of ${\cal M}$
- Each client computes a local update (gradient), u
- Server collects and aggregates client updates, $u = \Sigma u$
- Server updates ${\mathcal M}$ based on ${\mathcal U}$

Threat Model

- Input Privacy
- Client data is sensitive
- Untrusted server
- Input Integrity
- FL is vulnerable to data poisoning
- Malicious clients submit malformed updates to tamper with \mathcal{M} 's accuracy

Goals

- Ensure input privacy for clients
- Ensure input integrity to protect against data poisoning

2. Secure Aggregation with Verified Inputs

- Public validation predicate $Valid(\cdot)$
- Input u is valid, i.e., passes the integrity check if Valid(u) = 1
- E.g. $Valid(u) = \mathbb{I}[||u||_2 < \rho]$

A Secure Aggregation with Verified Inputs (SAVI) protocol Input Integrity:

- securely verifies the integrity of each input
- aggregates well-formed inputs only, i.e., Valid(u) = 1 Input Privacy:
- releases only the final aggregate in the clear

3. EIFFeL Overview

EIFFEL instantiates a SAVI protocol for an **arbitrary** public $Valid(\cdot)$ expressed as an arithmetic circuit.

Cryptographic Tools

- Input Privacy Shamir's Threshold Secret Sharing Scheme
- Input Integrity Secret-Shared Non-Interactive Proof (SNIP)
 - Verifiable Secret Shares

Key Ideas

- Single Server
- SNIP requires multiple honest servers to acts as the verifiers
- In EIFFeL, clients act as the verifiers for each other supervised by a single server
- Malicious Model = EIFFeL extends SNIP to the malicious model
 - Threshold secret sharing creates multiple instantiations of the SNIP protocol
 - Server uses this redundancy for robust verification

4. EIFFeL Workflow

Round 1. Announce public information

Round 2. Generate and distribute proof

Round 3. Verify proof

Round 4. Compute final aggregate

5. Evaluation Highlights

- With 100 clients and 10% poisoning, EIFFeL trains a model on MNIST to the same accuracy as that of a non-poisoned one in
- 2.4s/iteration per client
- Communication cost for the client is 9.5MB

