Constructing Frameworks for Task-Optimized Visualizations
Ghulam Jilani Quadri, University of North Carolina, Chapel Hill

Effective visualization must provide a clear and unbiased understanding of the information in the given data to support user's accuracy in visual task-performance and expressive data communication. Visualization effectiveness, a task-dependent engagement, directly impacting the design choices, is a constant pursuit to ameliorate efficacy. How does the effectiveness of visualization vary with visual task and visual design? How can an intersection of both visual tasks and visual design provide a visualization that optimally communicates data for a given scenario? In this work, we will see how we can resolve such conflicts and make a visualization more effective and optimal.

- Design optimization is a perennial topic in information visualization, striving to effectively visualize the data for better interpretation and accurate user task performance. Visualization effectiveness is task-dependent.
- I developed perceptual models for cluster perception and design optimization on the scatterplot. In addition, I employ the findings to show design choices based on the visual density of the scatterplot could influence the user's judgment on visual tasks.
- I address the challenge of assessing line chart smoothing effectiveness for a range of analytical tasks using an analytical framework for measuring the effectiveness of smoothing techniques. The framework evaluation shows that no single smoothing technique is ideal for all visual analytics tasks.
- These findings collectively inform how to optimize a visualization design on visual encoding, data aspects, and data transformation to support the user's performance at low-level visual tasks. I elaborate on utilizing the framework to provide less ambiguous data presentations, leading to better quality and higher decision-making confidence.

Building frameworks that include both perceptions of visual encodings and tasks is an essential step to optimizing visualization. I preferably in this work, extend the previous studies applying the Feedback-Loop System and models the optimization of visualization using human perception. This study describes experiments, techniques, and user studies to model user perception for visualization design optimization and data transformation for low-level visual tasks.