CAFQA: Clifford Ansatz For Quantum Accuracy

Quantum Computing

Why: Cryptography, chemistry, optimization, and machine learning.

How: Qubits redefine computation with interference, superposition, and entanglement.

When: Larger QCs + higher-fidelity qubits must emerge for quantum computing to be disruptive.

Classical Support for Quantum

Advancing NISQ frontiers with error mitigation and classical support.

CAFQA Philosophy

- NISQ machines are noisy, so VQA is inaccurate and slow to converge.
- Well-chosen ansatz initialization can help VQA.
- Clifford initialization is promising because its simulation and search are classically efficient.
- Result: CAFQA achieves 99% mean accuracy across VQE tasks.
- Recovers up to 99.99% of correlation energy over Hartree-Fock.
- Scalability tackles large complex systems like Chromium Dimer.
- 2.5x faster convergence post initialization.

Design Overview

Classical

- Classical discrete search:
 - Ideal evaluation
 - Fast evaluation each iteration
 - Scalable only in the Clifford space
 - Efficient discrete search (Bayesian Optimization)

Quantum

- Quantum continuous search:
 - Noisy evaluation
 - Fast evaluation each iteration
 - Scalable across the full parameter space
 - Efficient continuous search (e.g., SPSA)

CAFQA at work

- BO Search / H2O
- Chemical Accuracy

Overall accuracy benefits

<table>
<thead>
<tr>
<th>Year</th>
<th>Exponential Compute</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>~</td>
</tr>
<tr>
<td>2010</td>
<td>~</td>
</tr>
<tr>
<td>2030</td>
<td>~</td>
</tr>
</tbody>
</table>

H2 Initialization: Accuracy!

Post-CAFQA tuning: Fast!

Ask me more

1. Extensions to CAFQA.
2. Error mitigation for variational quantum algorithms.
3. Leveraging diversity to improve NISQ-era fidelity.
4. Quantum resource management in the cloud.

1: UChicago, 2: Super.tech, 3: MIT, 4: Tufts, 5: Duke