
Portable Programming of High-performance Data
Transformation
Marziyeh Nourian University of Chicago
Mentor: Dr. Andrew A. Chien

Introduction and Objectives
• Explosive rise of “big data” and data-intensive computing calls for efficient data

representations. Efficient data representations allow for storage, movement, and
computational efficiency.

• Conventional sequential processors and programming models are not designed for efficient
data transformation. Transformation of different data representations is a key performance
challenge, limiting the use of representations with expensive transformations in practice.

• We propose a computational model called extended Deterministic Finite-state Transducer
(DFST+) and a high-level programming model called Transducer Form (TFORM) that allows
for a compact, portable and efficient implementation of data transformation

• We use TFORM programs for efficient data transformation on CPU, Unstructured
Data Processor (UDP) [1] (a general data transformation accelerator), and UpDown
Engine [2] (a memory-movement and recode accelerator embedded in memory
hierarchy)

Applications
• Data analytics systems: Enhancing performance of transformations exploited in
Parquet (data format commonly used in data analytics systems) library

• Sparse matrix computations: Enhancing performance of transformations for
different sparse representations and encodings

• Graph processing: Enhancing performance of using compressed functional tree
(CTree) representation of graphs [3] (ongoing work)

Data Transformation Computational and
Programming Model

• Extended Deterministic Finite-State Transducer (DFST+) extends DFST
(traditional computational model for data transformation) with variables, actions on
the variables, and transitions conditional to the variables to enable compact and
efficient representation of data transformation

• TFORM programming model enables portable expression of DFST+

• TFORM Virtual Machine (VM) allows for
reducing DFST+ to practice

Experimental Evaluation

Conclusion

References

Plain

GVE Delta Dictionary VLE GVEBPE

RLE BPE VLE Dictionary GVEDelta

Parquet (a data
storage format)

Encodings
Covering NxN custom

transformations with only 2xN
TFORM programs

[2] A. A. Chien, A. Rajasukumar, M. Nourian, C. Zho,
and Y. Fang, “Updown Instruction Set Architecture
v0.9”, Dept. Computer Science, University of Chicago,
Tech. Rep., TR-2022-02, 2022.

[1] Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien.
“UDP: A programmable accelerator for extract-
transform-load workloads and more.”, In Proceedings
of MICRO 2017.

CTree processing
runtime overhead

Decompression
overhead

Mem BW
overhead

Tree
walking
overhead

a) Addressing decompression
overhead by enhancing
decompression transformation
performance using UpDown
Engine

DRAM

CTree Chunk +
delta encoding

Decoded
CTree
Chunk

TOP
Tree walking
computations

UpDown Engine
(TFORM program)

Compressed CTree Chunks

b) Addressing
Mem-BW overhead by further
compression and efficient
decompression of data

DRAM

CTree Chunk + delta +
Snappy + Huffman encoding

Decoded
CTree
Chunk

TOP
Tree walking
computations

UpDown Engine
(TFORM program)

Extra Compressed CTree Chunks

c) Addressing tree walking
overhead using less
expensive neighbor list
computations

UpDown Engine
(TFORM program)

DRAM

Decoded
Neighbour

List

TOP
Neighbor list
computations

Extra Compressed CTree Chunks

Addressing CTree
processing
overheads

CTree Chunk + delta +
Snappy + Huffman encoding

Input: 110000000002
Output: 219012

P:1

4

P:0

ℇ
0

M1= 0

2 3

M3=input
M4=M3-M2
P=(M4=0)?

a

M1= M1 +1

5

Put M1
M1=1

Put M2
M2= M3

1

M2=input

b

…

a
b

…

ℇ

ℇ

BLOCK 0{
M[1]=0
if(INPUT=a) GOTO BLOCK 1
…

}
BLOCK 1{

M[2]= INPUT
GOTO BLOCK 2

}
BLOCK 2{

if(INPUT=a) GOTO BLOCK 1
…

}

BLOCK 3{
M[3]= INPUT
M[4]=M[3]-M[2]
PREDICATE= M[4]==0
GOTO BLOCK 5 IF PREDICATE == 0
GOTO BLOCK 4 IF PREDICATE == 1

}
BLOCK 4{

M[1]=M[1]+1
GOTO BLOCK 2

}
BLOCK 5{

put M[1]
M[1]=1
put M[2]
M[2]=M[3]
GOTO BLOCK 2

}

DFST+ TFORM Program

TFORM Program

TFORM VM

Control-flow
encoded program Interpreter States and State-

offsets representation

UDP +
UpDown Engine CPU

+

Code-based
execution model

Memory-based
execution model

• Code optimization
• Program execution

using 2 different
execution models

Run-Length-Encoding
(RLE) example

Data Transformation Throughput on CPU
1.8X speedup over Parquet and 18.9X

speedup over SciPy (geomean)

Data Transformation Throughput on UDP
17.8X speedup (geomean)

[3] L. Dhulipala, G. E. Blelloch, and Julian Shun. “
Low-latency graph streaming using compressed
purely-functional trees.”, In Proceedings of PLDI
2019.

• We propose DFST+ (a new data transformation model), TFORM (a data transformation
programming model that expresses DFST+), and TFORM VM to efficiently implement
TFORM programs, enabling superior performance gains on UDP accelerator and
competitive performance on CPU compared to the hand-tuned libraries

Number of UDP
parallel lanes

• We compare performance of Parquet and SciPy (for sparse matric transformation)
library on CPU (64 cores) with CPU and UDP implementation of TFORM-based
transformations

• We exploit portable and efficient TFORM programs to unlock
the power of existing and future data representations and
hardware accelerators for efficient data transformation.

