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Introduction and Objectives Applications
 Explosive rise of “big data” and data-intensive computing calls for efficient data . Data analytics systems: Enhancing performance of transformations exploited in
representations. Efficient data representations allow for storage, movement, and Parquet (data format commonly used in data analytics systems) library

computational efficiency.
P : « Sparse matrix computations: Enhancing performance of transformations for

* Conventional sequential processors and programming models are not designed for efficient different sparse representations and encodings
data transformation. Transformation of different data representations is a key performance

challenge, limiting the use of representations with expensive transformations in practice. « Graph processing: Enhancing performance of using compressed functional tree

(CTree) representation of graphs [3] (ongoing work)
* We propose a computational model called extended Deterministic Finite-state Transducer

(DFST+) and a high-level programming model called Transducer Form (TFORM) that allows

a) Addressing decompression  b) Addressing c) Addressing tree walking
for a compact, portable and efficient implementation of data transformation overhead by enhancing Mem-BW overhead by further overhead using less
decompression transformation compression and efficient expensive neighbor list
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- We use TFORM programs for efficient data transformation on CPU, Unstructured runtime overhead ‘ DRAM DRAM DRAM
Data Processor (UDP) [1] (a general data transformation accelerator), and UpDown LU ==l —
Engine [2] (a memory-movement and recode accelerator embedded in memory compressed Clree Chunkes  Extra Compressed Clree Chunks - Extra Compressed CTree Chunte
hierarchy) . .
Experimental Evaluation
Data Transformatlon Computatlonal and + We compare performance of Parquet and SciPy (for sparse matric transformation)
Programming Model library on CPU (64 cores) with CPU and UDP implementation of TFORM-based
transformations
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} Data Transformation Throughput on UDP
BLOCK 1{ } 17.8X speedup (geomean) 1.8X speedup over Parquet and 18.9X
Dé([)é (JD_B?(\)TEET 5 speedup over SciPy (geomean)
, ) Conclusion
M=0 M,=input P:0/ Myinput | BLOCK '2f{ INPUT=a) GOTO BLOCK 1
€ @ I]‘,I;’;fﬁf,‘fi ’ ( 2 * We propose DFST+ (a new data transformation model), TFORM (a data transformation
Input: 110000000002 Put M, " } programming model that expresses DFST+), and TFORM VM to efficiently implement
Output: 219012 Iﬁ‘lfg‘; BLOCK 3 TFORM programs, enabling superior performance gains on UDP accelerator and
MM, MEZ%: 1[1§§>UT . competitive performance on CPU compared to the hand-tuned libraries
_ _ M[4]=M -M
 TFORM Virtual Machine (VM) allows for PREDICATE= M[4]==0 . .
| | coTo BLOCK 5 TF prEDTCATE == o0 * We exploit portable and efficient TFORM programs to unlock
reducing DFST+ to practice } GOTO BLOCK 4 IF PREDICATE == 1 the power of existing and future data representations and
TFORM Program | — L BLOCK 4{ hardware accelerators for efficient data transformation.
* Code optimization M[1]=M[1]+1
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