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Introduction and Objectives
• Explosive rise of “big data” and data-intensive computing calls for efficient data

representations. Efficient data representations allow for storage, movement, and
computational efficiency.

• Conventional sequential processors and programming models are not designed for efficient
data transformation. Transformation of different data representations is a key performance
challenge, limiting the use of representations with expensive transformations in practice.

• We propose a computational model called extended Deterministic Finite-state Transducer
(DFST+) and a high-level programming model called Transducer Form (TFORM) that allows
for a compact, portable and efficient implementation of data transformation

• We use TFORM programs for efficient data transformation on CPU, Unstructured
Data Processor (UDP) [1] (a general data transformation accelerator), and UpDown
Engine [2] (a memory-movement and recode accelerator embedded in memory
hierarchy)

Applications
• Data analytics systems: Enhancing performance of transformations exploited in
Parquet (data format commonly used in data analytics systems) library

• Sparse matrix computations: Enhancing performance of transformations for
different sparse representations and encodings

• Graph processing: Enhancing performance of using compressed functional tree
(CTree) representation of graphs [3] (ongoing work)

Data Transformation Computational and 
Programming Model

• Extended Deterministic Finite-State Transducer (DFST+) extends DFST
(traditional computational model for data transformation) with variables, actions on
the variables, and transitions conditional to the variables to enable compact and
efficient representation of data transformation

• TFORM programming model enables portable expression of DFST+

• TFORM Virtual Machine (VM) allows for
reducing DFST+ to practice

Experimental Evaluation

Conclusion
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BLOCK 0{
M[1]=0
if(INPUT=a) GOTO BLOCK 1
…

}
BLOCK 1{

M[2]= INPUT
GOTO BLOCK 2 

}
BLOCK 2{

if(INPUT=a) GOTO BLOCK 1
…

}

BLOCK 3{
M[3]= INPUT
M[4]=M[3]-M[2] 
PREDICATE= M[4]==0
GOTO BLOCK 5 IF PREDICATE == 0
GOTO BLOCK 4 IF PREDICATE == 1 

}
BLOCK 4{

M[1]=M[1]+1
GOTO BLOCK 2 

}
BLOCK 5{

put M[1]
M[1]=1
put M[2]
M[2]=M[3] 
GOTO BLOCK 2

}
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• We propose DFST+ (a new data transformation model), TFORM (a data transformation
programming model that expresses DFST+), and TFORM VM to efficiently implement
TFORM programs, enabling superior performance gains on UDP accelerator and
competitive performance on CPU compared to the hand-tuned libraries

Number of UDP 
parallel lanes

• We compare performance of Parquet and SciPy (for sparse matric transformation)
library on CPU (64 cores) with CPU and UDP implementation of TFORM-based
transformations

• We exploit portable and efficient TFORM programs to unlock
the power of existing and future data representations and
hardware accelerators for efficient data transformation.


