______ - »

ClFellows 2020-202]

Computing Innovation Fellows
Portable Programming of High-performance Data

Transformation

Marziyeh Nourian University of Chicago
Mentor: Dr. Andrew A. Chien

Introduction and Objectives Applications
 Explosive rise of “big data” and data-intensive computing calls for efficient data . Data analytics systems: Enhancing performance of transformations exploited in
representations. Efficient data representations allow for storage, movement, and Parquet (data format commonly used in data analytics systems) library

computational efficiency.
P : « Sparse matrix computations: Enhancing performance of transformations for

* Conventional sequential processors and programming models are not designed for efficient different sparse representations and encodings
data transformation. Transformation of different data representations is a key performance

challenge, limiting the use of representations with expensive transformations in practice. « Graph processing: Enhancing performance of using compressed functional tree

(CTree) representation of graphs [3] (ongoing work)
* We propose a computational model called extended Deterministic Finite-state Transducer

(DFST+) and a high-level programming model called Transducer Form (TFORM) that allows

a) Addressing decompression b) Addressing c) Addressing tree walking
for a compact, portable and efficient implementation of data transformation overhead by enhancing Mem-BW overhead by further overhead using less
decompression transformation compression and efficient expensive neighbor list
performance using UpDown decompression of data computations
Engine
TOP
@ @ @@@ @ Tree Tree walking Tree Wa|kingTOP Neighbor “S;I'OP
walking computations computations computations
Covering NxN custom overhead Decoded T Decoded Decoded
@ transformations with only 2xN Clree Bl cree N Neighbour
Mem BW o Chunk Chunk List
TFORM programs overhead vernea
] UpDown Engine UpDown Engine UpDown Engine
Decompression (TFORM program) (TFORM program) (TFORM program)
vt) outa oo e) st o u u
B CTree Chunk + B CTree Chunk + delta + B CTree Chunk + delta +
o - CTree processing delta encoding Snappy + Huffman encoding Snappy + Huffman encoding
- We use TFORM programs for efficient data transformation on CPU, Unstructured runtime overhead ‘ DRAM DRAM DRAM
Data Processor (UDP) [1] (a general data transformation accelerator), and UpDown LU ==l —
Engine [2] (a memory-movement and recode accelerator embedded in memory compressed Clree Chunkes Extra Compressed Clree Chunks - Extra Compressed CTree Chunte
hierarchy) . .
Experimental Evaluation
Data Transformatlon Computatlonal and + We compare performance of Parquet and SciPy (for sparse matric transformation)
Programming Model library on CPU (64 cores) with CPU and UDP implementation of TFORM-based
transformations
100000 S Hand-tuned(Parquet) mHand-tuned(SciPy) mTFORM(Code-based) 10000 = Hand-tuned(Parquet) mHand-tuned(SciPy) m TFORM(Memory-based)
 Extended Deterministic Finite-State Transducer (DFST+) extends DFST Number of UDP
o 64
(traditional computational model for data transformation) with variables, actions on 10000 | g o . a1 s
the variables, and transitions conditional to the variables to enable compact and & - a é
. . . =
efficient representation of data transformation s \ 5
. . g \ £
 TFORM programming model enables portable expression of DFST+ §’ 100 § 3
£ \ £
= N = 10
10 %
\
\
L 4 R R |
{
M[1]=0 & & £ & &L & ,»o°° & @\o"\\ @%“\ &
if (INPUT=a) GOTO BLOCK 1 & & &L F S L S S
Transformation algorithrons AR Transformation algorithms Q
} Data Transformation Throughput on UDP
BLOCK 1{ } 17.8X speedup (geomean) 1.8X speedup over Parquet and 18.9X
Dé([)é (JD_B?(\)TEET 5 speedup over SciPy (geomean)
,) Conclusion
M=0 M,=input P:0/ Myinput | BLOCK '2f{ INPUT=a) GOTO BLOCK 1
€ @ I]‘,I;’;fﬁf,‘fi ’ (2 * We propose DFST+ (a new data transformation model), TFORM (a data transformation
Input: 110000000002 Put M, " } programming model that expresses DFST+), and TFORM VM to efficiently implement
Output: 219012 Iﬁ‘lfg‘; BLOCK 3 TFORM programs, enabling superior performance gains on UDP accelerator and
MM, MEZ%: 1[1§§>UT . competitive performance on CPU compared to the hand-tuned libraries
_ _ M[4]=M -M
 TFORM Virtual Machine (VM) allows for PREDICATE= M[4]==0 . .
| | coTo BLOCK 5 TF prEDTCATE == o0 * We exploit portable and efficient TFORM programs to unlock
reducing DFST+ to practice } GOTO BLOCK 4 IF PREDICATE == 1 the power of existing and future data representations and
TFORM Program | — L BLOCK 4{ hardware accelerators for efficient data transformation.
* Code optimization M[1]=M[1]+1
A 4 — * Program execution GOTO BLOCK 2
TFORM VM I I }
using 2 different L References
execution models put M[1] — A
Code-based M[H;lz [1] Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien.
execution model ﬁ?;:&[%] “UDP: A programmable accelerator for extract-
Control-flow nt t States and State- GOTO BLOCK 2 transform-load workloads and more.”, In Proceedings
Nnierpreicr .
encoded program ‘b * o ffsets representation } of MICRO 2017.
@ {} [2] A. A. Chien, A. Rajasukumar, M. Nourian, C. Zho,
UDP+ CPU and Y. Fang, “Updown Instruction Set Architecture
UpDown Engine v0.9”, Dept. Computer Science, University of Chicagg

Tech. Rep., TR-2022-02, 2022.

[3] L. Dhulipala, G. E. Blelloch, and Julian Shun. *
Low-latency graph streaming using compressed
purely-functional trees.”, In Proceedings of PLDI
2019.

CCC

Computing Community Consortium
Catalyst

"3 CRA

Computing Research
Association

