NME2 and MYC Pathway Drives Resistance to Enzalutamide Treatment in CRPC Patients

Sukanya Panja1, Christina Xu1, Vernshi Saggurthi1, Michael H. Cook1, Katie Whitehead1, Maya Verdiarenesi Turcal1, Aymen Ali Saadi2, Riddhi Vyas1, Shridar Ganesan4, Frederick Coffman1, James S. Parrott1, Shantenu Jha2, Isaac Kim4, Edward Schaeffer3, Sarki Abdulkadir3, Vishal Kothari3*, Antonina Mitrofanova1,4*

1Rutgers School of Health Professions, Department of Health Informatics, Newark, NJ
2Rutgers School of Engineering, Department of Computer Engineering, New Brunswick, NJ
3Feinberg School of Medicine, Northwestern University, Department of Urology, Chicago, IL
4Rutgers Cancer Institute of New Jersey, New Brunswick, NJ

Abstract

Resistance to Enzalutamide is a serious problem in prostate cancer. Thus there is a crucial need to develop computational approaches that can help improve understanding of underlying molecular mechanisms involved in response to Enzalutamide. In this study, we have reconstructed a CRPC-specific mechanism-centric regulatory network which integrates biological pathways with their upstream transcriptional regulatory programs and mined the network to identify MYC pathway and its upstream transcriptional regulatory program, NME2 to be associated with response to Enzalutamide. Further, NME2 and MYC pathway activity have demonstrated the ability to predict CRPC patients who are at a higher risk of developing resistance to Enzalutamide. Finally, we have demonstrated that the ability of our findings to predict patients at risk of Enzalutamide resistance outperforms the predictive ability of markers associated to overall prostate cancer aggressiveness and treatment response. Thus we propose that MYC associated mechanisms can be utilized to pre-screen patients who are at a higher risk of developing resistance to Enzalutamide.

Background

Prostate cancer patients that develop resistance to androgen deprivation therapy progress to a more lethal form of the disease known as castration resistant prostate cancer (CRPC). For such CRPC patients, Enzalutamide is most common form of treatment as it has shown to improve patient survival. However, some patients do not respond to it and develop resistance in approximately 8 months to 1.5 years. As CRPC patients that fail Enzalutamide treatment are left with no targeted therapeutic option, there is a crucial need to develop methodologies that can help improve our understanding of the underlying molecular mechanisms involved in response to Enzalutamide.

Reconstruction of the network

Following reconstruction of the network, our next essential step was network mining. In this study network mining was a multi-step process. In the first step, we aimed to identify parts of the reconstructed network (also referred to as subnetworks that composites of molecular pathways and their upstream transcriptional regulatory programs) that govern response to Enzalutamide treatment. In particular, we sought to identify parts of the network that were upregulated in untreated state (i.e., phenotype 1), becomes down-regulated in Enzalutamide sensitive state (i.e., phenotype 2) and then again "recovered" and become up-regulated in Enzalutamide resistant state (i.e., phenotype 3). We hypothesized that subnetworks that showcase such "up-down-up" behavior play a role in response to Enzalutamide.

Mining of the network – Step 1

Partial least square inspired approach utilizes weights, w, along with transcriptional regulatory programs (i.e., TR, orange nodes) to identify latent variables (pie circles) and contribution of each transcriptional program to a latent variable (pie slices in a pie, colored in different shades of grey). Alongside association between each TR and a latent variable is illustrated by circle of correlation. Further utilizing the circle of correlation, correlated transcriptional regulatory programs were clustered and prioritized. Our analysis identified MYC pathway and its upstream transcriptional regulatory program NME2 to play a role in response to Enzalutamide.

Mining of the network – Step 2

Prostate cancer patients that develop resistance to androgen deprivation therapy progress to a more lethal form of the disease known as castration resistant prostate cancer (CRPC). For such CRPC patients, Enzalutamide is most common form of treatment as it has shown to improve patient survival. However, some patients do not respond to it and develop resistance in approximately 8 months to 1.5 years. As CRPC patients that fail Enzalutamide treatment are left with no targeted therapeutic option, there is a crucial need to develop methodologies that can help improve our understanding of the underlying molecular mechanisms involved in response to Enzalutamide.

Conclusion

MYC-associated mechanisms can serve as a biomarker of primary resistance to Enzalutamide aiming to identify patients that are at risk of developing resistance.

Funding Sources

New Jersey Commission on Cancer Research Pre-Doctoral Fellowship

NME2 and MYC pathway are associated with poor response to Enzalutamide

(Left) Kaplan-Meier survival analysis comparing CRPC patients that received post-sample adjuvant Enzalutamide from Abida et al cohort with high NME2 and MYC pathway activity (yellow) and rest of the patients (blue). Log-rank p-value, hazard ratio, and CI are indicated. (Right) Kaplan-Meier survival analysis comparing CRPC patients that received post-sample adjuvant Abiraterone from Abida et al cohort with high NME2 and MYC pathway activity (yellow) and rest of the patients (blue). Log-rank p-value, hazard ratio, and CI are indicated. ROC analysis on CRPC patients that received post-sample adjuvant Abiraterone from PROMOTE indicate cooperation indicate cooperation between NME2 and MYC pathway cannot classify CRPC patients based on their response to Abiraterone. AUROC is reported.