
Huge Data is outgrowing
the Internet’s file

transfer protocols

Prof. Craig Partridge
Colorado State University

Joint thinking with Prof. Susmit Shannigrahi of Tenn Tech

Keynote: NSF Huge Data Workshop, April 2020

••• •••• ••••• •••• ••••• •••• •••• • •

------------------------------ -

Roughly 1 in every 121 huge
file transfer delivers bad data

Liu et al, HPDC ‘18 found that about 1 in every
121 FTPs of large data delivered a file that FTP
said was OK, but a message digest computed
over the file showed was not an accurate copy
of the original file

This was using Globus FTP, which enhances FTP to
compute and check a message digest over the file.

••• •••• ••••• •••• ••••• •••• •••• • •

What Could Be Causing That
Level of Errors?
 Work 20 years ago showed that most end-to-end

errors were in hosts, routers, and middleboxes
 On some of those errors, the TCP checksum

was not very effective
 A new wrinkle: the checksum is right but data is

bad
 Recent unpublished work suggests middleboxes no longer

incrementally update the checksum but rather just recompute it –
so they give a good checksum to packets they’ve trashed!

Sources: Stone & Partridge, SIGCOMM 2000; Stone, Hughes, Partridge,
SIGCOMM 1995; Jan Rüth, private note

••• •••• ••••• •••• ••••• •••• •••• • •

Errors, cont.
 There’s also reason to believe link layer

errors may be creeping through
 CRC-32 is excellent
 Catches any one error < 32 bits and any single 2-

bit error within 2048 bits
 But CRC-32 may be overwhelmed with errors
 One study suggests as WiFi data rates increase,

the error rates jump substantially (as high as
34%)

Source: Feher, Access Networks, 2011.

••• •••• ••••• •••• ••••• •••• •••• • •

Est. 5B-10B Large Data
Downloads/year
 This is a handwaving estimate, based on

more narrow studies of specific environments
 CERN transfers 1.1Billion files/year

 Growing exponentially

Source: https://home.cern/news/news/computing/lhc-pushing-computing-limits

••• •••• ••••• •••• ••••• •••• •••• • •

Only about half of file transfers
at DoE use Globus
 Regular FTP, scp and http[s] also common
 Plethora of other applications

− FDT, Aspera, Fcache
 Implications….
 As much as 40M bad files, delivered as “good”

and undetected per year!
 10B ✕ 50% not caught by Globus ✕ 1/121

••• •••• ••••• •••• ••••• •••• •••• • •

That Many Bad Files? Really?
 Our guess is that the number is lower

 But that’s only because the scientific
community has been doing a lot to double
check their data
 Computing message digests on files if Globus

doesn’t
 Double checking copies by copying multiple times

••• •••• ••••• •••• ••••• •••• •••• • •

Copying Multiple Times?!?
 Yep!

 And there’s a preference to bypass replicated
copies to get the ”authoritative” copy…

 Undoing replication systems because they
don’t trust copies

••• •••• ••••• •••• ••••• •••• •••• • •

What Does This Mean for Huge
Data?
 We have file transfer protocols delivering bad

files
 As a result, the scientists are
 Copying multiple times (consuming large amounts of

bandwidth)
 Doing large file transfers, realizing the file is bad, and

throwing it away (can’t do incremental updates)
 Avoiding replication and caching systems (which also

makes it hard to better use bandwidth)
 Possibly utilizing bad data unknowingly (with

consequences for big science)

••• •••• ••••• •••• ••••• •••• •••• • •

How Might We Move
Forward?

••• •••• ••••• •••• ••••• •••• •••• • •

For the Next Couple of Years
 Use message digests on files!

 But 32-bit message digests (ala Globus) will
stop protecting us shortly
 1 bad file in every 121 ✕ 2^32 message digest =

1 in 53B transfers… close to the level we’re at

 We could use a bigger message digest but
that’s a mistake (see a few slides down)

••• •••• ••••• •••• ••••• •••• •••• • •

Create a Next Gen FTP
 Message checksums on files
 Both total file and increments

 Better checkpointing
 Support incremental repair of files during transfer

(don’t throw a bad file away, fix it!)
 Allow copying from multiple replicated locations

concurrently (performance)
 Ability to check against authoritative copy w/o

copying
 Scientists want an authoritative validity check

••• •••• ••••• •••• ••••• •••• •••• • •

Why Message Checksums?
 Digests
 Are expensive to

compute (bad idea for
huge data)

 Have poor error
detection properties
(simply 1 in 2^x, where
x is digest size)

 Checksums
 Are fast to compute
 If you know the error

patterns, can be 100%
effective

 Match digest error
detection on unknown
error patterns (2^x)

Networking last looked deeply at checksums in the 1970s.
There’s been a lot of mathematical work since.

••• •••• ••••• •••• ••••• •••• •••• • •

Bigger Picture for
Huge Data

••• •••• ••••• •••• ••••• •••• •••• • •

Suggested Takeaways
 We need to look at where the volume of data is

stressing our systems
 FTP was designed in 1971, when a big file held a

megabyte
 Deep Medhi’s talk @ CoNext ENCP 2019

 We need applications to log when they are in
distress and share that data with researchers
and operators
 Errors tend to cluster (a bad system or protocol)
 We want to find those errors (replace a bad system,

improve a protocol)

••• •••• ••••• •••• ••••• •••• •••• • •

"Any opinions, findings, conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the Networking and Information

Technology Research and Development Program."

The Networking and Information Technology Research and Development

(NITRD) Program

Mailing Address: NCO/NITRD, 2415 Eisenhower Avenue, Alexandria, VA 22314

 Physical Address: 490 L'Enfant Plaza SW, Suite 8001, Washington, DC 20024, USA Tel: 202-459-9674,

Fax: 202-459-9673, Email: nco@nitrd.gov, Website: https://www.nitrd.gov

mailto:nco@nitrd.gov
https://www.nitrd.gov/

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

