Distributed Computing at NSF

Daniel S. Katz
NSF/ACI
Research vs. Infrastructure

• Research: projects that support research in distributed computing
• Includes many CISE core programs, such as Computer Systems Research (CSR) and Networking Technology and Systems (NeTS), as well as Exploiting Parallelism and Scalability (XPS)
 – ~17% of new FY14 CISE projects support research into or are closely related to cloud computing, across:
 • Computer systems
 • Computer networks
 • Security and privacy
 • Data Management
 • Applications and Software Engineering
• Many other programs from across NSF, including BIGDATA, Computational and Data-Enabled Science & Engineering (CDS&E)
Research Partnerships

• With SRC – Secure and Trustworthy Cyberspace: Secure, Trustworthy, Assured and Resilient Semiconductors and Systems (SaTC: STARSS)
 – Hardware design for assured function
 – 9 FY14 projects funded jointly by NSF & SRC

• With Intel – Cyber-Physical Systems Security (CPS-Security)
 – Ensuring that cyber-physical systems are secure and preserve privacy
 – Small number of FY14 projects funded jointly by NSF & Intel
 – 2 Larger-scale, interdisciplinary projects in future
 • ~$3M/project, with multiple PIs
Research vs. **General Infrastructure**

- Infrastructure: projects that provide distributed computing for use in general research
 - XSEDE and OSG
 - Campus Cyberinfrastructure – Data, Network, and Innovation (CC*DNI)
 - CI platforms, e.g. iPlant, nanoHUB, OOI, ...
 - Major Research Instrumentation (MRI)
XSEDE (NSF-funded)

Vision: A world of digitally enabled researchers, engineers, and scholars participating in multidisciplinary collaborations to tackle society’s grand challenges

Mission: To substantially enhance the productivity of a growing community of researchers, engineers, and scholars through access to advanced digital services that support open research

- Leads to more science
- Makes a previous impractical project feasible
- Lowers barriers to adoption

An ecosystem of advanced digital services accelerating scientific discovery

- Supports a growing portfolio of interconnected resources and services
 - Advanced computing, high-end visualization, data analysis, and other resources and services
 - Interoperability with other infrastructures

- Intended for large number of projects per year (production class)
- Allocated through XSEDE-run national peer review process
- Open to US researchers and their collaborators in any field

Credit: John Towns (modified)
ACI-Supported Resources
Increasingly diverse yet collaborative

UCSD
Trestles
IO-intensive
10k cores
160 GB SSD/Flash

Gordon
Data-intensive
300 TB Flash Mem

* Comet
Long Tail Science
47k cores/2 PF
High Throughput

UIUC/Blue Waters
Leadership Class

Open Science Grid (OSG)
High throughput

Indiana U.
Jetstream
Cloud-based

UT-Austin

Stampede
460K cores

Maverick
Visualization, Data Analytics

* Wrangler
Novel Data-intensive

UT-Knoxville/ORNL
Darter
250 TFlops

Nautilus
Visualization

Keeneland
CPU/GPGPU

PSC
Blacklight/Supercell
Large Shared Memory

Bridges
Data-intensive

LSU SuperMIC
380 nodes – 1PF

UT-Knoxville/ORNL

Distributed resource

* To be deployed in 2015
* To be deployed in 2016
OSG (NSF- and DOE-funded)

- **Mission:** The Open Science Grid aims to promote discovery and collaboration in data-intensive research by providing a computing facility and services that integrate distributed, reliable and shared resources to support computation at all scales.

- **OSG is a Consortium**
 - Resource owners and campuses, scientist and research users, computer scientists and software providers, national and International partners

- **OSG is a Project**
 - Provides a fabric of services across contributed resources
 - E.g., Operations, user support, software packaging, testing, patching

- **OSG is an Ecosystem**
 - Provides a framework for exploring ways of scientific discovery through the use of distributed high throughput computing
 - Domain and computer scientists collaborating for more than decade
 - Contributing to state of the art through innovation and collaboration

- **Connected to campus grids through BOSCO & OSG Connect**

Credit: Lothar Bauerdick (modified)
OSG in Numbers

- OSG Delivers up to 2 Million CPU hours every day
- Almost 700M hours of Distributed High-Throughput Computing per year, of which ~90M were provided as “opportunistic resources”
- About 60% go to LHC, 20% to other HEP, 20% to many other sciences
- OSG has a footprint on ~120 campuses and labs in the U.S.
- OSG transfers ~1 PetaByte of data every day
- Supports active community of 20+ multi-disciplinary research groups
CC*DNI

- Campus networking program, investing in improvements and re-engineering at the campus level to support a range of data transfers supporting computational science and computer networks and systems research
- Data infrastructure program, integrates new data-focused services, capabilities, and resources beyond single institutions; incorporates innovative developments in networking
- Also supports Network integration activities tied to achieving higher levels of network performance, reliability and predictability for science applications and distributed research projects
Research vs. Computer Science Infrastructure

- Infrastructure: projects that provide distributed computing for use in CS research
- Intended to give researchers systems on which they can do research at scale/level appropriate for impacting commercial systems
 - NSF FutureCloud
 - Parallel Reconfigurable Observational Environment (PRObE)
 - Global Environment for Network Innovations (GENI)
 - CISE Research Infrastructure (CRI)
 - Major Research Instrumentation (MRI)
• A Large-Scale, Reconfigurable Experimental Environment for Cloud Research

• Kate Keahey (U Chicago), J. Mambretti (Northwestern), D.K. Panda (Ohio State), P. Rad (UT San Antonio), W. Smith, D. Stanzione (UT Austin)

• Large-scale, responsive experimental testbed
 – Targeting critical research problems at scale
 – Evolve with the community input

• Reconfigurable environment
 – Support use cases from bare metal to production clouds
 – Support for repeatable and reproducible experiments

• One-stop shopping for experimental needs
 – Trace and Workload Archive, user contributions, requirement discussions

• Intended to engage the community
 – Network of partnerships and connections with scientific production testbeds and industry
 – Partnerships with existing testbeds
 – Outreach activities

• http://www.chameleoncloud.org
“With CloudLab, it will be as easy to get a cloud tomorrow as it is to get a VM today”

Robert Ricci (U Utah), A. Akella (U Wisconsin), KC Wang (Clemson), C. Elliott (Raytheon/BBN), M. Zink (UMass), G. Ricart (US Ignite)

Built on Emulab and GENI

Exploring emerging and extreme cloud architectures

Evaluating design choices that exercise hardware and software capabilities

Studying geo-distributed data centers for low-latency applications

Developing different isolation models among tenants

Quantifying resilience properties of architectures

Developing new diagnostic frameworks

Exploring cloud architectures for cyber-physical systems

Enabling realtime and near-realtime compute services

Enabling data-intensive computing (“big data”) at high performance in the cloud

http://www.cloudlab.us
Funding Platforms

• Computer science research, supported by CISE research programs, NSF FutureCloud, CRI, some MRI
 – Platforms are central
• Domain science research, supported by other NSF research programs, general infrastructure including some MRI
 – Platforms are essential, but not central
• Need to continue to support both
Going Forward

- Emphasize research to infrastructure process (aka transition to practice)
- Emphasize federation (for both compute and data)
 - Using existing work from XSEDE, OSG, OGF, GENI, IETF, EGI, etc.
 - Common authentication, authorization, accounting (AAA) services
- Continue to make sure infrastructure needed for distributed computing research is available
- Continue to make sure distributed infrastructure needed for general research is available
- Determine needs, e.g.
Looking Farther Forward

- Start to think of infrastructure in wider sense
- What are the abstractions & tools for using this entire infrastructure?
- Cross-cutting concerns: security, programmability, reliability, verifiability