
The Disappearing Boundary Between
Development-time and Run-time

Luciano Baresi and Carlo Ghezzi
Politecnico di Milano, Dipartimento di Elettronica e Informazione – DeepSE Group

Piazza L. da Vinci 32, 20133 Milano, Italy
luciano.baresi|carlo.ghezzi@polimi.it

ABSTRACT
Modern software systems are increasingly embedded in an
open world that is constantly evolving, because of changes
in the requirements, in the surrounding environment, and
in the way people interact with them. The platform itself
on which software runs may change over time, as we move
towards cloud computing. These changes are difficult to pre-
dict and anticipate, and their occurrence is out of control of
the application developers. Because of these changes, the
applications themselves need to change. Often, changes in
the applications cannot be handled off-line, but require the
software to self-react by adapting its behavior dynamically,
to continue to ensure the desired quality of service. The big
challenge in front of us is how to achieve the necessary de-
grees of flexibility and dynamism required by software with-
out compromising the necessary dependability.

This paper advocates that future software engineering re-
search should focus on providing intelligent support to soft-
ware at run-time, breaking today’s rigid boundary between
development-time and run-time. Models need to continue to
live at run-time and evolve as changes occur while the soft-
ware is running. To ensure dependability, analysis that the
updated system models continue to satisfy the goals must
be performed by continuous verification. If verification fails,
suitable adjustment policies, supported by model-driven re-
derivation of parts of the system, must be activated to keep
the system aligned with its expected requirements.

The paper presents the background that motivates this
research focus, the main existing research directions, and an
agenda for future work.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—Computer-aided software engineering (CASE); D.2.4
[Software Engineering]: Software/Program Verification—
Formal methods

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE-18, November 7–11, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-60558-791-2/10/11 ...$10.00.

General Terms
Design, Reliability, Verification

Keywords
Runtime Support, Self-adaptation, Service-oriented Systems

1. INTRODUCTION
The clear separation between development-time and run-

time is one of the dogmas of traditional computer science.
Traditional software engineering research has been mostly
focused on development-time, investigating how the software
development process can be understood, improved, and au-
tomated. The ultimate goal, of course, is producing quality
software; that is, software that correctly performs its func-
tionality and achieves the goals the users expect from it.
Methods, techniques, and tools have been developed to en-
sure correctness and satisfaction of all functional and non-
functional requirements before software is delivered to users
and put in operation, to minimize the chance that the soft-
ware misbehaves while in operation. In the state of the prac-
tice, almost no or little attention has instead been placed on
supporting software at run-time, and only in recent years
software engineering research started focusing on these is-
sues. The implicit traditional assumption is that the soft-
ware can only be observed at run-time, but almost nothing
can be done to affect it or modify it while it is being en-
acted. The wealth of methods and tools that are used at
development-time to forge the software have no more use
when the software enters the run-time stage. If problems
are found that need corrective actions, error reports and
change requests are filed by users and then prioritized by
software developers to be handled off-line.

This framework is changing today and will change more in
the future. The clear separation between development-time
and run-time is blurring and may disappear in the future
for relevant classes of applications. In this paper, we briefly
motivate why and how this is happening (Section 2). We
then discuss in Section 3 some research that is being per-
formed both by us and by other researchers to tackle some
of the problems arising in these contexts. Finally, in Section
4 we outline an agenda for future work and in Section 5 we
draw some conclusions.

2. CONTINUOUS CHANGE
Software evolution has been recognized as key distinctive

feature since the early 1970’s by many researchers, and most

17

notably by Belady and Lehman [11]. Indeed, perhaps evolu-
tion is the most important aspect that distinguishes software
from other artifacts produced by humans. To understand
the deep causes of evolution, we can refer to the seminal
work on requirements by Jackson and Zave [14], which illus-
trates the relation between the machine and the world.

The machine is the system to be developed; the world
(the environment) is the portion of the real-world affected
by the machine. The ultimate purpose of the machine is
always to be found in the world. Requirements thus refer to
the desired phenomena occurring in the world, as opposed
to phenomena occurring inside the machine. Some of such
phenomena are shared with the machine: they are either
controlled by the world and observed by the machine, or
controlled by the machine and observed by the world. A
specification (for the machine) is a prescriptive statement of
the relations on shared phenomena that must be enforced
by the system to be developed. Finally, it is important to
understand the set of relevant assumptions that can be made
about the environment in which the machine is expected to
work, which affect the achievement of the desired results.
This is also called domain knowledge. Quoting from [14]:
“The primary role of domain knowledge is to bridge the gap
between requirements and specifications”.

In fact, if R and S are the prescriptive statements that for-
malize the requirements and the specification, respectively,
and D are the descriptive statements that formalize the do-
main assumptions, it is necessary to prove that

S, D |= R

that is, S entails satisfaction of the requirements R in the
context of the domain properties D. Thus D plays a fun-
damental role in establishing the requirements. We need to
know upfront how the environment in which the software is
embedded works, since the software can achieve the expected
requirements only based on the assumptions on the behavior
of the domain described by D. Should these assumptions be
invalidated, as a consequence the requirements might be vio-
lated. Environment assumptions may be invalidated for two
reasons: either because the domain analysis was flawed or
because the environment has changed, and the assumptions
that were made earlier are no longer valid.

Software evolution refers to changes that may be made
to the machine to respond to changes in the requirements
and/or in the environment (we assume the implementation
to be correct, i.e., no failures are due to errors in the ma-
chine implementation). Changes in the requirements mostly
fall under the traditional perfective maintenance category,
and may be dictated by changes in the business goals of or-
ganizations or new demands by users of older versions of an
application. Environmental changes instead affect the as-
sumptions that ensure the satisfaction of the requirements.
They may represent organizational assumptions or condi-
tions on the physical context in which the machine is em-
bedded. If these assumptions are invalidated, the software
must undergo what is traditionally called adaptive mainte-
nance.

The management of changes in the maintenance phase
clearly indicates that traditional software evolution is an off-
line phase. Software returns in the development stage, where
changes are analyzed, prioritized, and scheduled. Changes
are then handled by modifying the design and implementa-

tion of the application. The evolved system is then verified,
typically via some kind of regression testing.

This lifecycle does not meet the requirements of many
emerging application scenarios, which are subject to contin-
uos changes in the requirements and in the environment, and
which require rapid adaptation to such changes. Increas-
ingly, both recognition of and reaction to changes must be
managed automatically by the running system, and off-line
human intervention must be limited to only special cases.
Run-time adaptation must be achieved seamlessly, as the
application is running and providing service.

There are already numerous examples of existing systems
were these requirements hold. At the business level, infor-
mation systems are increasingly built through service units
and their dynamic integration. Service units may be sup-
plied by different providers, crossing enterprise boundaries.
The service network is dynamic, since changes in business
conditions may require automatic adaptation of the network.
At another extreme, pervasive computing systems are also
characterized by continuous, dynamic changes, mostly due
to contextual changes. A typical context change is due to
mobility, which may expose the application to unexpected
changes in, for example, the assumptions made on certain
features provided by other devices in the environment with
which the application interacts.

All the examples of systems we refer to provide their func-
tionality by relying on other applications that exist in the en-
vironment. Such applications, which we call services, differ
from components in traditional component-based software
systems. Services, in fact, are run autonomously remotely.
They may be discovered dynamically and then be invoked
by other applications to have some task executed. Normally,
these services belong to different stakeholders, who have full
responsibility over their evolution, deployment, and execu-
tion. They may commit to satisfying a certain quality of
service, but client application cannot have full trust into it.
Systems built out of services, called service-oriented systems,
are therefore characterized by distributed ownership. No sin-
gle stakeholder is in control of the whole system. Rather,
new systems are built out of parts that may evolve dynam-
ically and autonomously. Service-oriented systems are an
increasingly important —though not exclusive— class of sys-
tems for which dynamic evolution and adaptation is crucial.
In this paper we deliberately focus on them.

The Jackson-Zave framework can help us better under-
stand the nature of changes in R and D and the way they
can be handled. First, to be more precise in the termi-
nology, we may use the term evolution to indicate changes
that require human intervention and off-line modification
of the software. The term adaptation may instead be used
to indicate changes that the software itself can handle au-
tonomously. Changes in R mostly lead to evolution: they
can only be understood and handled by humans. Instead
changes in D may largely be handled by adaptation.

Following [10], and focusing on the specific example of an
e-commerce application built by integrating (orchestrating)
a number of existing Web services, we can decompose the set
of domain properties D upon which requirements rely into
two main disjoint subsets, Du and Ds. The set Ds collects
all the assumptions on the external services invoked by the
application, which describe what the composite application
to be developed expects from them to achieve its own goals.
If S1, S2, . . . , Sn are the required specifications of these ex-

18

ternal services, Ds = S1 ∪ S2, . . . ∪ Sn. Du instead denotes
the assumptions on usage profiles. It consists of properties
that characterize how the final integrated system is expected
to be used by its clients. A possible example of a usage pro-
file is: “The probability that users buying technical books also
order express shipping instead of normal shipping is 0.6”. Ds

and Du describe domain assumptions made by the software
engineer at design-time. Proper design must ensure that the
application satisfies the requirements, under the assumption
that Ds and Du correctly characterize he behavior of the en-
vironment. However, these assumptions are subject to high
uncertainty and may change dynamically. As we discuss
hereafter, changes in D can often be detected automatically
by suitable sensors that monitor the environment and can
trigger strategies to achieve self-adaptation.

3. EXISTING WORK
Existing work addressing the issues outlined in Section 2

falls in the areas of self-adaptive systems1 and autonomic
systems2, currently investigated by active international re-
search communities. Existing approaches may be organized
according to the Monitor-Analyze-Plan-Execute (MAPE) loop.
To achieve self-adaptation, systems must be able to monitor
the possible sources of change, through suitable (abstract)
sensors which may detect changes in the environment that
require suitable reaction. To understand if a relevant change
occurred, the data collected by the monitor must be ana-
lyzed. As a result of analysis, a change plan must be iden-
tified, and eventually executed.

Monitoring has been an active research field for years [6]
and the advent of services has motivated a new thread of
works. The distributed ownership of service compositions
has imposed constraints on what can be monitored and on
how it can be done. The actual deployment of server-side
probes to assess the vital parameters of services is not feasi-
ble, and most of the monitoring approaches (e.g., [13, 12, 2])
only assess the values of interest as perceived by the applica-
tion. Besides this, monitoring approaches can be character-
ized by the information they collect and by their impact on
the execution of the actual business logic. Some approaches
probe the messages exchanged between the parties [13] and
can only provide low-level and domain-independent data
(e.g., the actual throughput or the mean time between a
request and its answer). In contrast, other proposals work
at a higher level and provide users with business-related
data [12]. Orthogonally, some approaches work in paral-
lel with the business logic, do not interfere with it, but can
only be used for off-line analyses. Other approaches are
more intrusive and intertwine the execution of the business
logic with the collection (and analysis) of data. The execu-
tion becomes slower, but the detection of anomalies, along
with the enactment of corrective actions, becomes timely
and more focused.

As for analysis, research has been focusing on two main
issues. One is run-time verification3, possibly achieved by

1International Workshop on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS).
2International Conference on Autonomic Computing
(ICAC) or the International Conference on Self-Adaptive
and Self-Organizing Systems (SASO).
3International Conference on Runtime Verification (RV)

keeping models at run-time4 [4], which may be used to per-
form continuous analysis that the (model of the) application
continues to behave satisfactorily. The other concerns data
analysis, which may apply machine learning techniques to
transform the data produced by the monitors into informa-
tion that may be used to verify the model at run-time.

If analysis highlights problems, planning is often carried
out through policies and event-condition-action rules [5].
The event is triggered by the analysis, possible conditions
help further identify the reaction, and the action is a pre-
computed activity (or set of activities), which aim at keeping
the application on track. Possible adaptations span from the
simple re-execution of the interaction with the misbehaving
partner to the re-selection of the partner service. Some ap-
proaches (e.g. [3]) have also tried to apply actual planning
techniques to adapt the application by re-computing a new
service composition able to carry out the task because of a
new goal or a new context (i.e, set of services), but their
suitability as “general-purpose solution” is still to be fully
proved.

Our own past work has been focusing on several of the
aforementioned aspects. We proposed an assertion-based
monitoring and recovery solution for service compositions [2].
We developed two special-purpose languages, called WSCoL
(Web Services Constraint Language) and WSReL (Web Ser-
vice Recovery Language), to let the designer collect rele-
vant data, specify punctual assertions on the interactions
between the composition and its partner services, and iden-
tify corrective/adaptive actions if needed. WSCoL lets the
designer collect data from the composition itself, the envi-
ronment, and previous executions; assertions can predicate
on both functional and non-functional properties. WSReL
supports the definition of articulated recovery strategies by
composing atomic activities (like changing the partner ser-
vice, retrying the interaction, or rolling back the execution).
The evaluation of these assertions, along with the execution
of associated recovery actions, is synchronous with respect
to the execution of the business logic to provide the user
with a focused and precise management tool. Its impact at
run-time can be tuned by switching on and off the evaluation
of the different constraints.

As for analysis, we have been focusing on functional, tem-
poral, and quantitative probabilistic analysis to achieve con-
tinuous verification of evolving systems ([1, 7, 10]). In par-
ticular, to analyze non-functional requirements, such as per-
formance or reliability, we explored the use of Markov mod-
els for the application. Models can be analyzed via prob-
abilistic model checking and changes in the model parame-
ters due to environment changes may be learnt by using a
Bayesian approach, which may update the parameters based
on data collected by monitors.

4. OPEN ISSUES
Adaptive software systems are increasingly built in prac-

tice. As discussed in the previous section, research in this
area has also been active since several years, and several con-
tributions have already been produced to move beyond the
current ad-hoc practices. Much remains to be done to sup-
port development of adaptive systems via a comprehensive,
systematic, and disciplined approach. Hereafter we elab-

4International Workshop of Models at Runtime (mod-
els@runtime).

19

orate on a number of key research areas. The list is not
exhaustive, but simply reflects our current interests and re-
search priorities.

A first area concerns discovery and learning. In the fu-
ture, the environments in which we operate will be fully
populated by active devices and appliances which will of-
fer services. Services will come and go dynamically; they
will meet each other and cooperate. They might not know
each other, but may still try to understand what each can
do and possibly cooperate to achieve common goals. How
can this be achieved? How can a component learn about
what another component offers? How can this be achieved
depending on different levels of visibility into the internals
of the components? For example, how far can we go in the
case of black-box visibility, i.e., only observation of the ex-
ternal component’s behavior? How can the observations of
component be trusted? How can they be generalized? In
this area we did some initial work which aims at inferring
the functional behavior of a (stateful) component by obser-
vations of inputs and outputs at its API [8]. Our method,
which applies suitable learning strategies, is largely based
on an assumption of regularity of the components’ behav-
iors. It has been tested quite successfully in the case of Java
data abstractions [9], but more needs to be done to make
the approach general and practical.

A second area concerns run-time verification. In our work
so far we used at run-time the same models that were ini-
tially used to assess the application at design-time. In par-
ticular, for quantitative probabilistic properties, we used
Markov chains and probabilistic model checking. Resort-
ing to the same models guarantees that exactly the same
analysis, with the same level of accuracy, is repeated at run-
time. This, however, may clash with the requirements of
execution time efficiency that may be required to allow the
adaptation policies to react effectively (timely) to changes.
Possible alternative solutions may be explored, which may
simplify the properties to monitor at run-time. Alterna-
tively, one might explore how to make model checking more
efficient; for example, by making it incremental. Yet an-
other approach (which we are currently exploring), consists
of deriving closed formulae for the properties to be checked
at run-time, where changeable values of environment data
are represented as variables, whose values become known at
run-time. The computation of such closed formulae from re-
quirements properties requires expensive symbolic formula
manipulations, which may however be performed at design-
time. On the other hand, run-time checking is very efficient.
It is still unclear how general the approach is; that is, the
class of requirements assertions for which closed formulae
may be derived.

A third area concerns run-time self-adaptation. This is a
very active area of research, as we mentioned in the previous
section. An interesting, and to the best of our knowledge,
unexplored approach would be to address it in the model-
driven framework. Since models are kept alive at run-time,
once the need for adaptive reactions is identified, it would
be useful to perform self-adaptation at the model level, and
then re-play model-driven development to derive an imple-
mentation through a chain of automatic transformations. To
do that, we would need a library of model adaptation strate-
gies, and tactics to select them based on the required adap-
tation. This would be an interesting research area, where
progress is needed. Progress is also needed in the automatic

chain of transformations that can derive the final implemen-
tation to be run as a target of the adaptive transformation
process.

A fourth crucial area concerns the problems arising from
new execution platforms, such as cloud computing. So far we
assumed that changes are either in R or in D. But with the
advent of cloud computing, also the infrastructure on which
our machine works may change. If we exploit the full poten-
tial of the service paradigm, we must complement our usual
application level (software-as-a-service) with the platform
and infrastructure on which the software is run, and they
both can be seen as services. The use of a single abstrac-
tion to reason on both the machine and the infrastructure
may pave the ground to “holistic” solutions. Self-adaption
cannot be seen at application level only, but we must deploy
probes, conceive analysis techniques, and identify solutions
able to self-adapt the system as a whole. Adaptations at ap-
plication level must consider the implications on the lower
levels, but conversely these levels provide the means to let
the application execute properly. A given quality of service
at application level may be a consequence of assumptions
and decisions on the lower levels; adaptation becomes much
more an inter-level problem than a set of isolated, and maybe
cooperating, intra-level solutions.

Moreover, the adoption of cloud infrastructures will also
impose a shift from client-side “proprietary” computing re-
sources to “shared” ones. Web services made us think of
the distributed ownership of our applications; the cloud will
make us think of the distributed ownership of our infras-
tructures. Partially, this is already the case when we want
to use components (services) run and shared by others, but
clouds will enlarge the problem. The execution of one ap-
plication will compete with the execution of others, turning
self-verification and adaption into infrastructure-wide prob-
lems.

5. CONCLUSIONS
The paper identifies the need for intelligent support to

software at run-time as one key direction for future research
in software engineering. The boundaries between development-
time and run-time are too rigid, and we already have many
important applications that require more and more runtime
adaption instead of traditional adaptive maintenance. The
key enabler for this shift will be the transformation of models
in runtime entities able to guide and coordinate changes and
modifications. The main existing solutions in this direction
and an agenda for the future complete the proposal.

Acknowledgments
This paper reflects the work being developed within the SM-
Scom project, funded by the European Commission, Pro-
gramme IDEAS-ERC, Project 227977 (www.erc-smscom.org).

6. REFERENCES
[1] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and

P. Spoletini. Validation of Web Service Compositions.
IET Software, 1(6):219–232, 2007.

[2] l. Baresi and S. Guinea. Self-supervising BPEL
Processes. IEEE Transactions on Software
Engineering, 2010. to appear.

[3] P. Bertoli, M. Pistore, and Traverso P. Automated
Composition of Web Services via Planning in

20

Asynchronous Domains. Artificial Intelligence,
174(3-4):316–361, 2010.

[4] G. Blair, N. Bencomo, and R. B. France. Models@
run.time. Computer, pages 22–27, 2009.

[5] M. Colombo, E. Di Nitto, and M. Mauri. SCENE: A
Service Composition Execution Environment
Supporting Dynamic Changes Disciplined Through
Rules. In Proceedings of the 4th International
Conference on Service-Oriented Computing, volume
4294 of Lecture Notes in Computer Science, pages
191–202. Springer, 2006.

[6] N. Delgado, A. Quiroz Gates, and S. Roach. A
Taxonomy and Catalog of Runtime Software-Fault
Monitoring Tools. IEEE Transactions on Software
Engineering, 30(12):859–872, 2004.

[7] I. Epifani, C. Ghezzi, R. Mirandola, and
G. Tamburrelli. Model Evolution by Run-Time
Adaptation. In Proceedings of the 31st International
Conference on Software Engineering, pages 111–121.
IEEE Computer Society, 2009.

[8] C. Ghezzi, A. Mocci, and M. Monga. Synthesizing
Intensional Behavior Models by Graph
Transformation. In Proceedings of the 31st
International Conference on Software Engineering,
pages 430–440. IEEE Computer Society, 2009.

[9] C. Ghezzi, A. Mocci, and G. Salvaneschi. Automatic
Cross Validation of Multiple Specifications: A Case
Study. In Proceedings of Fundamental Approaches to
Software Engineering, volume 6013 of Lecture Notes in
Computer Science, pages 233–247. Springer, 2010.

[10] C. Ghezzi and G. Tamburrelli. Reasoning on
Non-Functional Requirements for Integrated Services.
In Proceedings of the 17th International Requirements
Engineering Conference, pages 69–78. IEEE Computer
Society, 2009.

[11] M. M. Lehman and L. A. Belady, editors. Program
Evolution: Processes of Software Change. Academic
Press Professional, Inc., 1985.

[12] M. Mahbub and G. Spanoudakis. A framework for
requirements monitoring of service based systems. In
Proceedings of the 2nd International Conference on
Service Oriented Computing, pages 84–93. ACM Press,
2004.

[13] O. Moser, F. Rosenberg, and S. Dustdar.
Non-intrusive Monitoring and Service Adaptation for
WS-BPEL. In Proceedings of the 17th International
Conference on World Wide Web, pages 815–824.
ACM, 2008.

[14] P. Zave and Jackson M. Four Dark Corners of
Requirements Engineering. Transactions on Software
Engineering and Methodology, 6(1):1–30, 1997.

21

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

