
© The Aerospace Corporation 2014

“Service Performance” Aspects for
Cloud Service Level Agreements

NITRD SLA Workshop
Arlington, VA, August 6, 2014

Dr. Craig A. Lee, Senior Scientist, lee@aero.org
Computer Systems Research Department
The Aerospace Corporation

Why SLAs?
• Some applications will be performance-critical or performance-sensitive

– "Best effort" cloud resources may not suffice to meet mission requirements
• Some applications will have dynamic requirements

– Some apps will have varying demands – surge -- at unpredictable times
• Surge traditionally addressed by over-provisioning with dedicated hardware

– Dedicated system was sized for the worst-case, rather than the average case
– Drove acquisition costs and operation costs for the entire life of the system
– Example: Satellite ground systems

• This is antithetical to cloud computing
– Multi-tenant environment where utilization and costs can be better managed

• Hence, the goal is to provide the user with a reasonable expectation that
performance requirements will be met, through mechanisms that are
reasonable for the provider to implement and support for multiple apps

• These cannot simply be contractual SLAs
– These must be capabilities that a provider may provide and a user may use to

keep applications “in spec”
– Dynamic, machine-enforceable SLAs

• Work in this area has already been done in the Grid community
2

Grid Computing:
“Big Science” Collaboration on a Global Scale

3

EU EGI, NSF XSEDE, DOE OSG, …
(WLCG Dashboard website: http://dashb-earth.cern.ch)

WS-Agreement, GFD.192

• Defines term language and protocol for advertising service
provider capabilities, creating agreements based on offers,
monitoring compliance, and penalties/rewards for non-compliance

• RESTful implementations exist

4

WS-AgreementNegotiation, GFD.193

• Defines an offer/counter-offer model for dynamic exchange of
information between a negotiation initiator and responder

• Rounds of negotiation modeled as a rooted tree
– States: Advisory, Solicited, Acceptable, Rejected

• Layered model separates functions and implementations

5

How to Use this in a Cloud Environment?
• WS-Agreement and WS-AgreementNegotiation are

parameter (term language) and cloud agnostic
• Many SLA metrics possible:

– Memory/Disk (space: bytes)
– Throughput (rate: x/sec)
– Bandwidth (rate: bytes/sec)
– Latency (time: t)
– Time-to-Solution (time: t)
– Availability (time ratio: percentage)

• Application-level requirements must be mapped to
infrastructure-level requirements

– This will be application-specific
• To have "teeth", an SLA must be monitored and enforced

– WS-Agreement and WS-AgreementNegotiation are only the
front-end of the SLA process

6

Basic SLA Functions
– an Autonomic Control Cycle
• Admission Control

– Mapping of app-level requirements to infrastructure-level metrics
– WS-Agreement and WS-Agreement Negotiation
– Term language needed

• Monitoring - Metrics Collection
– Where: host OS/hypervisor, guest OS, application-level
– When: upstream vs. downstream

• SLA Evaluation
– Hysteresis
– Statistical methods, e.g., Median Absolute Deviation, Interquartile

Range, Iterative Local Regression
• SLA Enforcement -- Violation Response

– Throttling
– Load migration – process, VM, container migration all possible
– Elasticity -- on-demand resources
– SLA re-negotiation

7

Type I
Best
Effort

Type II
Strict

Throttling

Type III
Live Migration

Type IIIa

Type IIIa

Type IIIb

Type IIIb

additional
surge

capacity

w/ spare capacity

Type V
Idle

Type III
Live Migration

w/ back-fill

Type IV
Preemptible

Spare Cap.
w/

preemptible
back-fill

Server Load Types for SLA Management

Lee and Sill, A Design Space for Dynamic Service Level Agreements in OpenStack
Journal of Cloud Computing: Advances, Systems and Applications, to appear, 2014.8

An SLA Architecture for OpenStack

Lee and Sill, A Design Space for Dynamic Service Level Agreements in OpenStack
Journal of Cloud Computing: Advances, Systems and Applications, to appear, 2014.9

Summary, Findings, Conclusions & Comments
• Lots of Development & Testing needed

– What are the simplest SLA mechanisms that "scratch the itch" for the most users?
– Contractual SLAs vs. machine-enforceable SLAs
– Cloud performance SLAs vs. network SLAs (SDNs?)
– Lighter weight alternatives to VM migration

• Process migration; Container-based virtualization -- Docker
• Capacity Planning & Management

– How to estimate query requirements, load demand, time-to-completion
– How to support reasonable load requirements to produce reasonable behavior
– How to manage sets of users such that no one user is disruptive

• Cyber-security Implications
– As clouds become larger and more widely used, there will be more automated tools, i.e.,

autonomic behaviors
– Autonomic agents become a threat surface -- compromising an agent that controls system

behavior would have broad impact
• Leverage/harmonize existing SLA work

– OGF WS-Agreement, WS-Agreement Negotiation
– TeleManagement Forum (TMF)
– Distributed Management Task Force (DMTF), …

• <humor> And don’t forget the WS-Disagreement protocol (WS-NO), GFD.199, ;-)
– Most negotiations fail anyway – WS-Disagreement save vast amounts of time and

money by immediately going to the “Disagree” state and staying there </humor>
10

