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ABSTRACT

Multiprocessors are now commonplace, and cloud comput-
ing is swiftly following suit. While it is possible to write
high performance code for these systems, concurrency bugs
are extremely common and theoretical performance is often
difficult to realize. In order to take advantage of increasing
numbers of parallel resources, numerous parallel program-
ming systems have been proposed and deployed, usually
without a systematic evaluation of their usability. In order
to make both programmers and their parallel applications
more effective, we need more useful metrics for measuring
programmer productivity and a better way to evaluate such
metrics. We posit that usability is a key factor in the effec-
tiveness of a parallel programming system, and that theoret-
ical performance gains can only be realized if programmers
are able to successfully reason about their parallel code.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming; distributed programming ; H.1.2
[Models and Principles]: User/Machine Systems—hu-
man factors; software psychology

General Terms

Human Factors, Languages, Measurement, Performance

1. INTRODUCTION
Until recently, processor speeds would double every 18

months alongside transistor densities. Now the industry
has hit a power wall that makes increasing the processor
speed untenable [ABD+09]. Since processor clock speeds
have plateaued, exploiting multiple levels of parallelism is
now the primary way to enhance performance; parallel pro-
cessors are now found in home computers as well as big data
centers and national laboratories. Although parallel pro-
gramming has spread, getting good performance while co-
ordinating tasks with locks, messages, and other techniques
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continues to be devilishly hard. Competing paradigms, lan-
guages, teaching styles, and tools have been debated in the
research literature.

Usability is a measure of how easy a system is to use in
terms of learnability, efficiency in the hands of an expert,
ease of making mistakes, and user satisfaction [Nie]. There
are a plethora of parallel programming systems (including
languages, libraries, IDEs and correctness checkers); many
of these have neglected to focus on usability. We posit that
usability is a key factor in the effectiveness of a parallel pro-
gramming system, and that theoretical performance gains
can only be realized if programmers are able to successfully
reason about their parallel code.

1.1 Contributions
In this position paper we outline the past and future of

research on parallel programming on usability:

• We present an overview of related work on parallel
programming languages and usability (Section 2).

• We outline a selection of research challenges for mea-
suring productivity in a parallel programming language
(Section 3). We provide a selection of metrics for pro-
grammer productivity (Section 3) to serve as fodder
for future discussions on this topic.

• We identify five further research directions that may
help to improve the usability of parallel programming
systems (Section 4).

2. RELATED WORK
Although the term “Parallel Programming System” en-

compasses IDEs and other software engineering contexts,
most prior research on productivity and parallel program-
ming systems has focused on languages or libraries for writ-
ing parallel programs. For this reason, we consider that
research on productivity and parallel programming systems
lies in the intersection of programming languages (PL) and
human computer interaction (HCI).

Research that falls at the intersection of PL and HCI is
starting to become something of a hot topic [MK09], as in-
creasing numbers of researchers are looking to HCI methods
to help improve software engineering practices. As just one
example, it seems likely that the utility of parallel debuggers
could be improved by applying HCI data mining techniques
to identify and add support for common debugging strate-
gies [FKGB10, GBR10]. Greg Morrisett lists closing the gap
between HCI and PL as one of the grand challenges in PL
research [gra09].
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A programming language is, by definition, a form of inter-
action between humans and computers. The implicit goal of
PL research is to make it easier for people to write correct,
scalable, understandable code. With this research goal, one
might imagine the two subfields of HCI and PL share more
past research than they do. However, little work has been
done at the intersection of parallel programming and usabil-
ity, and the small body of research that does exist in this area
is mostly inconclusive [Luf09, HC09, SSE96, ESEG+06].

One study [RHW10] with a notably large number of par-
ticipants involved 237 undergraduate students implementing
the same program with coarse-grain locks, fine-grain locks,
monitors, and transactions. They found that students con-
sistently thought locking was easiest to think about and had
the best syntax, but their subjective impressions of transac-
tional memory improved significantly with experience (and
were on par with fine-grained locking by the second year
of exposure to transactional memory). Regardless of famil-
iarity, the transactional memory implementations had the
fewest errors. In other words, subjective impressions of the
difficulty of a particular implementation strategy are not
necessarily correlated with correctness.

Szafron and Schaeffer [SSE96] compared a message pass-
ing library to a GUI-based parallel programming system
called Enterprise. The participants for this experiment were
graduate students completing an assignment. In this study,
the messaging passing library implementations were faster
and were coded in less time, but the Enterprise implementa-
tions required fewer lines of code (LOC) and fewer compila-
tions. The researchers note that each model encourages the
programmers to make different kinds of mistakes, although
the Enterprise mistakes are rated as less serious (tending to
decrease efficiency but not correctness). This study high-
lights the difficulty in reconciling comparisons made along
different axes.

Ebcioglu et al. [ESEG+06] compared three different lan-
guages, and found that the X10 language had a shorter de-
velopment time, defined as time to either a correct solution
or giving up on the problem; the authors do not report if
this result is statistically significant. What is particularly
interesting about this study is that about a third of the par-
ticipants in all three groups did not successfully complete a
correct solution that exhibited any speedup. Several of the
remaining participants’ solutions had scalability issues. This
study demonstrates that parallel programming is difficult in
all three of the languages under consideration.

2.1 Usability and HPC
Although most programmers are employed outside of the

large scientific computing centers, High Performance Com-
puting (HPC) systems act as a forecast for future business
and home systems; the scale of parallelism HPC systems
achieved on large, expensive machines in past generations is
now accessible to a much wider base of programmers. HPC
programmers also make up an important community of par-
allel programmers.

The DARPA High Productivity Computing Systems pro-
gram [hpcb, HC09] seeks to improve the state of scientific
computing. Several new languages are currently in devel-
opment, and the initiative has sparked renewed interest in
usability issues. As a result of this initiative, a growing
group of researchers have been looking at programmer pro-
ductivity for developing HPC software [HC09]. A collabo-

rative of universities are conducting a variety of classroom
studies to compare different programming models across a
variety of representative applications [HCS+05]. It is worth
noting that most of these studies use novices as the study
participants rather than experienced HPC programmers.

Meredydd Luff [Luf09] compared multithreading with the
actor model (i.e. message passing), transactional memory,
and a sequential control sample. Each participant wrote
code for the multithreaded case and one of the other cases.
This work measured programmer effort, using the three main
metrics of time taken to write the program, LOC, and sub-
jective impressions. The end result was inconclusive.The
learning effect was significant; the second implementation
of each participant was significantly faster to code. Also,
participants fell into two distinct groups of either finishing
their code in time, or not finishing at all. This study high-
lights the fact that there is substantial variation between
programmers.

Hochstein et al. [HCS+05] compared serial, MPI (mes-
sage passing), and OpenMP (shared memory) implemen-
tations, written by novice programmers, of two problems.
They found that MPI effort (in terms of time and LOC)
was greater than OpenMP effort, but there were not enough
data points to compare the program performance in a sta-
tistically meaningful way. They also measured the time
taken to transform a serial implementation into a parallel
implementation. Hochstein et al. [HBVG08] later compare
the parallel random access memory (PRAM) model, which
supports synchronous parallel operations to avoid common
concurrency errors like data races, with MPI message pass-
ing. They found that the PRAM-like implementations were
faster, but there was not a statistically significant difference
in program correctness. These studies demonstrates the dif-
ficulty of designing experiments comparing programmer ef-
fort which result in a statistically significant comparison.

The HPC Challenge Award Competition [HPCa] recog-
nizes the most productive implementations of a set of bench-
marks, weighted 50% on performance and 50% on subjective
impressions of code elegance, clarity, and size. This compe-
tition highlights the often dramatic tradeoff between code
elegance and code performance. For example the LOC used
to implement the Linpack benchmark in C/MPI1, Cilk2,
and Chapel1 were 8800, 348, and 176, respectively. Reports
on the Cilk and Chapel implementations [Kus06, CCZ07]
go into detail about the language features that reduce the
amount of code needed. Cilk (or its Altix platform) had
difficulty scaling up the performance of Linpack.

Exascale systems are expected in the 2018-2020 time frame,
bringing additional requirements for resilience and power
awareness in HPC code. Although programs like High Pro-
ductivity Computing Systems are positive developments, con-
siderably more resources continue to be devoted to buying
new hardware instead of improving the software to effec-
tively take advantage of existing hardware. The usability of
HPC parallel programming systems is becoming even more
challenging than it already is.

2.2 Usability and Parallel Abstractions
A few studies have started to look at usability issues and

core parallel programming concepts. Eccles et al. [ES05]
use a card sorting technique to get both novices and ex-

1From the 2009 competition.
2From the 2006 competition.
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perts to categorize different parallel algorithms. They found
that novices and experts each used a different classification
scheme. They conclude that making the core features of the
expert classification scheme (i.e. communication granular-
ity and associated overheads) more obvious within a parallel
programming system may increase the usability of that sys-
tem. This difference in classification could identify a set of
concepts which delineate novices from experts. McKenney
et al. [MGM+09] propose a framework for describing the in-
herent difficulty in parallel programming in which parallel
programming challenges are divided into four areas: work
partitioning, parallel access control, resource partitioning,
and interacting with hardware.

A large portion of parallel programming uses the mul-
tithreaded shared memory concurrency model, which has
been heavily criticized for being difficult to reason about.
Traditional threads and locks, though popular, are “incom-
prehensible to humans” [Lee06]. Some new programming
frameworks (e.g. OpenCL, .NET 4.0) provide abstractions
built on top of thread pools. These abstractions are less gen-
eral but more easily understood. Abstractions also increase
productivity (and possibly code correctness) at the expense
of performance. Unfortunately, the exact magnitudes of this
tradeoff are often unclear.

2.3 Synthesis
Although most of the research focused on parallel pro-

gramming and usability is inconclusive, it is still possible
to draw some conclusions. The research demonstrates that
parallel programming is difficult, and that writing correct
parallel programs is even more difficult. In fact, writing
correct parallel programs may be even more difficult than
novice programmers realize. That said, some programmers
are more successful at writing parallel programs than others.

It is rare that a language or system is better than another
one on every point of comparison. Even taking this into
account, it is difficult to design a study which makes the
tradeoffs between different systems clear. Language-level
abstractions can lead to a dramatic improvement in code
elegance, clarity, and size. In many contexts, this differ-
ence may be more important that squeezing the last drop of
performance out of a program.

3. CHALLENGES
There is a semantic ambiguity in measuring productiv-

ity in a programming language that makes languages and
features difficult to compare. We outline several challenges
with measuring programmer productivity.

Identify who should write parallel programs and target
usability for those programmers.

Generally, PL/HCI research has distinguished between
novices, expert users, and end users [MK09].3 It is much
easier to run a controlled experiment with novice users (e.g.
in the context of teaching a course), and so this is what
many researchers have done. However, controlled experi-
ments with novice users have been criticized for their ecolog-
ical validity [HC09]. At this juncture, it is unclear whether
parallel programming ability is a necessary skill for all pro-

3End users are people who write programs but are not pro-
grammers [MK09].

grammers, or can be a specialization held by one member of
a software development team.

It may be fruitful to categorize parallel programmers based
on problem domain instead of experience level. For example,
scientists may have different needs in a parallel program-
ming system than application developers. One challenge
is to collect information about types of parallel program-
mers, and then target subsequent usability research towards
a particular group. Alternatively, given that few professional
programmers are experts in parallel programming, perhaps
strategies that have been successful for end users could be
adapted to help programmers produce correct and scalable
parallel code. A related issue is how to tell when parallel
programmers have reached expert status. What set of ques-
tions or problems can be used to judge parallel programming
expertise?

Software maintenance tasks are a standard part of the
programming process.

Once the type of users to measure has been established,
there is still a question of what it means to be productive
for those users. Most usability analyses of programming
systems involve participants writing stand-alone programs.
This does not clearly extend to real world cases with large
programs, legacy code, and different program styles. We
feel that more research needs to focus on the usability of
programming systems in terms of software maintainability;
successful systems will make it more difficult for program-
mers to introduce bugs while modifying code. Future us-
ability studies should investigate users debugging parallel
programs, and users adding more parallel code to an exist-
ing code base.

Correctness is important.
It is appropriate to measure the difficulty of speeding up

code while also gathering metrics pertaining to program cor-
rectness. Checking correctness of a program requires a clear
specification, regression test suite, model checking system,
etc. Collecting these necessary parts is more difficult for par-
allel programs [LPSZ08]. A correctness index of how easy
it is to introduce bugs with different parallel programming
systems would increase our understanding of the tradeoffs.

As distributed applications continue to scale up to larger
systems, performance analysis must also consider an appli-
cation’s resilience in the face of failure [JDD08]. Check-
pointing and restarting technology has been traditionally
used in scientific simulations, but the overhead of this tech-
nique increases proportionally with the number of parts in
the system. We feel that resilience to failure can have a large
impact on the usability of a parallel programming system,
but is difficult to quantify.

Benchmarks define the problem space.
Choosing good representative programming problems to

measure is just as critical as choosing good metrics. Different
paradigms may work better for different problems, and we
still need clear productivity baselines [Gab96] across bench-
marks. We believe that there will be no silver bullet parallel
programming system that works for all types of problems.
Pattern suites help define the problem space; examples in-
clude the Cowichan suite [Wil94] or the 13 Dwarfs [ABD+09].
One important area of future research is developing an agreed-
upon taxonomy of core tasks and algorithms for a parallel
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programming system. Both microscopic and macroscopic
views add valuable insight. Focusing solely on measuring
small tasks could lead to optimizations that do not actu-
ally contribute a positive measurable effect in more com-
plex problems, while focusing on any given larger applica-
tion risks becoming irrelevant to other unrelated problems.
For that reason, a weighted index of tasks and applications
could provide the most generally relevant evaluation of the
usability of different parallel programming methodologies.

We need better metrics for programmer productivity.
How can we measure programmer effort? Most studies

which look beyond code performance attempt to measure
the amount of time taken for participants to write a pro-
gram. However, identifying which time was spent on coding
is a nontrivial task. Some studies have asked participants
to rate subjective impressions of difficulty or effort. A num-
ber of indirect metrics for effort have been used, including
the number of LOC. Although LOC is recognized as an in-
adequate measure for effort [HCS+05], it has been used as
a proxy for both programmer effort, under the assumption
that shorter programs are faster to write (see, for exam-
ple, [CYZEG04]), and also program correctness, under the
assumption that shorter programs contain fewer bugs (see,
for example, [SSE96]). It is unclear how subjective impres-
sions or indirect metrics correlate with the performance of
a program, or the amount of programmer time required to
produce a program in the system or language. We need
clearer metrics for describing programmer effort, and more
powerful and reliable tools for gathering and evaluating such
metrics [Luf09].

We would like metrics that will allow us to compare dras-
tically different implementations of the same algorithm, and
even different algorithms achieving the same goal. The fol-
lowing suggestions are provided as starting points for dis-
cussion. To be useful, these metrics will require more tools
to help automate their collection and analysis.

Time-based metrics compare the amount of time to:

• create basic serial, optimized serial, basic parallel, and
optimized parallel implementations using a particular
programming system

• execute each implementation
• debug different classes of errors (e.g. computational

kernel, parallelization, middleware, OS, hardware) us-
ing a particular programming system

• enhance an implementation with resilience features (check-
point/restart, single and multiple component failures)

• document implementations
• perform a code review

Complexity metrics compare statistics collected over pro-
grams written with different systems:

• computer-assisted microanalysis [CW92, HCHP92]
• levels of nesting
• McCabe Cyclomatic Complexity [McC76]
• comparison of the numbers of various operations or

characteristics in an implementation (e.g. bugs, tasks,
memory transfers [Pro99])

We believe that metrics such as these will allow us to com-
pare the ability of programmers when using different paral-
lel programming paradigms. Understanding when different
paradigms are most useful can help programmers more eas-
ily produce correct, high performance code.

4. FUTURE AREAS OF RESEARCH
Some directions for future research were outlined in the

previous sections. A variety of additional questions sur-
rounding usability and parallel programming remain to be
answered. We here identify five additional topics: program-
ming metaphors, visualization techniques, correctness com-
prehension, social support, and improved cost models.

Which metaphors are the most effective for explaining
concepts of multithreading or other parallel computation?
The importance of effective metaphors is often overlooked,
but can have a significant impact on understanding, par-
ticularly for novice users of a system [LJ80, WT99, PM96].
What implicit assumptions do programmers make about dif-
ferent parallel programming paradigms?

What are effective visualization techniques for parallel
programs? This is another relatively unexplored area within
parallel programming research [gra09] that has usability im-
plications. As the number of states and interactions be-
tween parts of a parallel program scale up, the gulf between
detailed and global views expands. How can program visual-
izations improve the correctness and performance of parallel
programs?

Do people that write parallel programs understand dif-
ferent correctness criterions for those programs? How can
we make correctness conditions easier to understand? What
predicts who can write correct parallel programs? Several
prior usability studies [Luf09, ESEG+06] of parallel pro-
gramming systems found that a significant group of par-
ticipants were unable to produce a faster, correct solution
to the programming problem posed.

Programmers work in teams, and the code they write will
be passed on to later generations. What parallel program-
ming system features can help communicate the meaning of
a piece of code quickly and accurately to other team mem-
bers, managers, or later programmers? Also, how can we
build social support for writing parallel programs?

Achieving good parallel performance requires a substan-
tial investment in time and effort to master various levels of
abstraction, and often requires a solid understanding of the
hardware/software stack. For example, false sharing can oc-
cur if two regions of memory share the same cache line but
are used by different threads. However, detecting false shar-
ing is difficult at the language level: a programmer needs
to understand how caching behaviours affect their program.
In other words, the language-level cost model is incomplete.
We need a way to expose a more accurate cost model, with-
out throwing away the abstractions we built.

5. CONCLUSION
Usability is a key factor in the effectiveness of a parallel

programming system; we have outlined several future re-
search directions on this topic. We need better metrics for
programmer effort and parallel programming expertise, and
a comprehensive taxonomy of parallel problems. We need to
address program correctness as a usability issue, and under-
stand who writes parallel programs. We need to continue
traveling down this last mile of parallel programming and
usability, because the future is already here.
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