
Moving bureaucracies
toward modern cloud
practices
Will Slack and Peter Burkholder, 18F
For FASTER Community of Practice
June 1, 2018

Met

1 2 3 4 5

Agenda

Introductions The cloud
today

Strategies
we suggest

A cloud.gov
case study

A federalist
case study

Introductions

Peter

● Joined GSA and 18F in
August 2016

● Geophysicist turned IT
modernization
specialist

● Previously worked for
IT automation vendors,
healthcare start-ups,
and major research
labs, including NI

Will

● Joined GSA and 18F in
Mar 2015

● Previously
implemented
enterprise hospital
medical records
systems and credit
card/electronic
payment processes for
a large company

The cloud today

Cloud first
Lags with cloud adoption:

● In FY2016, $85B IT spend, only $2.6B on cloud
● In 2016, zero agencies at 15% cloud utilization

Progress:

● FedRAMP passed 100 authorized CSPs
● TIC modernization underway
● CoEs and USDA datacenter to cloud migration

Uneven implementation

● Naive lift-and-shift
● High spend
● Low utilization
● Re-implementing iron in the cloud

● Wide range of adoption statuses across the
government, sometimes within agencies

Missed opportunities

● Cost (capex v. opex, if not savings)
● Security
● Automation
● Mission-focused IT (lean/agile, innovation)

Mission-focused IT

Does IT matter?

● 2003: Nicholas Carr / HBR
○ But then: DevOps

● 2014: Gartner / Bimodal IT
○ But high-perf IT orgs still out-performed

2.2X
More likely to recommend
organization as a place to
workPuppetLabs 2016 State of DevOps Report

50%
Less time spent remediating
security issues

Metrics

Traditional IT measures

● Lines of Code
● Velocity
● Utilization
● MTBF
● Uptime

High-performance measures

● Release frequency
● Lead time (commit to

release)
● % change fail rate
● MTTR
● SLOs

Strategies we
suggest

Start small, start core

● Don’t plan a full migration until you’ve
done one and learned from it.

● Broadcast the progress through
regular updates.

● Example: if you are running a
program that involves tree permitting,
you could start with the tree that has
the lowest permit counts.

You are doing this well when:
● The team working on your first project

is less than “two pizzas” in size.

● Your initial team is self-sufficient and
has embedded skills in ops, security,
and acquisition.

● People are excited about the project
and following along unprompted.

Strategies we suggest

Live prototyping

● If your systems are public, your
prototypes should be public.

● After your system is live, maintain a
public staging system to test changes
before pushing live.

● Deploy multiple versions of a system
or feature for users and stakeholders
to compare.

You are doing this well when:
● Your users default to trying out your

staging environment.

● Your team and stakeholders are
interested in looking at prototypes
and giving feedback.

Strategies we suggest

Version control

● Habitually express everything with
code and employ version control for
that code.

● When you start, host locally, in your
cloud, or via a SaaS solution.

● Peer review on all code changes
should become normal.

You are doing this well when:
● Code updates are the *only* way that

changes are made. (example:
Terraform & DNS)

● People communicate over merge/pull
requests.

● People take pride in their commit
history.

Strategies we suggest

Be agile

● Create and iterate on working
software instead of creating and
following large, comprehensive plans.

● Agile is more expensive than waterfall
because we expect and plan to
change direction as we learn (instead
of not learning until the end).

● Agile is something you are more than
a specific set of practices.

You are doing this well when:
● Your team expects and appreciates

whatever agile rituals and tooling you
use (sprints, standups, backlogs).

● All of your team members speak up
and contribute when determining
commitments and priorities.

Strategies we suggest

Automated code deployment

● Release code day one.

● Demonstrate confidence in
automation and testing, testing,
testing.

● Demonstrate freedom from runbooks
alongside portability of development
to other team/vendors

You are doing this well when:
● You have a one button release

process.

● Your deploy process includes linting
and testing processes that confirm
functionality as a part of deployment.

Strategies we suggest

Start with security

● Security should not be a exercise to
pursue after development. Instead,
pursue security and compliance as
you develop.

● Create a team with ATO authorization
personnel and your team that work
together to achieve security and
compliance.

● Create a “blameless postmortem”
culture when there is a security issue.

You are doing this well when:
● Your cloud team and your compliance

personnel are informally
communicating or chatting outside of
formal processes.

● Discussion of security concerns is
normalized and doesn’t make team
members feel nervous.

Strategies we suggest

Embrace an IaaS > PaaS > SaaS model

● Systems in the cloud don’t need to
operate exactly like data center
hosted systems; cloud allows a
different architecture and shared
services.

● Allow for authorization reuse.

● Your team can climb up the ATO
mountain using a “cable car” to
traverse most of the distance.

You are doing this well when:
● You are using multiple software

solutions on the same platform and
set of tooling.

● You don’t have to configure tooling
multiple times.

Strategies we suggest

Agile procurement

● Use a challenges summary vs
detailed technical requirements

● Offer smaller proposal sizes

● Plan to evaluate in weeks

● Set up contracts to reward delivery

● Early failure means work is less
expensive

You are doing this well when:
● You’ve broken what would

traditionally be a large, monolithic
contract into several shorter-term,
lower dollar amount contracts.

● A problem in one part of the project is
isolated and can be addressed easily.

More information:
https://modularcontracting.18f.gov/

Strategies we suggest

https://modularcontracting.18f.gov/

A case study:
cloud.gov

tools → behavior
behavior → culture

Tools matter.
Your platform matters.

Platform is where you build, test and run:
● Stack: WebServer, AppServer, Database, Cache, Index
● Environments: (local), dev, test, stage, prod
● User management: admin, developers, auditors
● Operations: patch, logs, CDN, scanning, availability

Traditional platforms often add friction.

Platform as a Service can be your best
support for iterative work.

Platform as a Service
Pre-built environment ready for deploying
an application.

Developers can focus on mission needs.

Common technology resources are
managed by an expert operations team:
● Operating system
● Databases
● Audit trails
● Authentication
● Authorization
● Load balancing
● Scaling
● Vulnerability scans
● Programming languages
● Automated updates

Agency
responsibility

Provider
responsibility

Data
center IaaS

Application

Platform

Hardware

Facility

PaaS

Reduce what you manage that’s common across
the government.

😱😱😱😱😱😱😱😱

cloud.gov

cloud.gov is a Platform
as a Service (PaaS).

It is based on industry
standard Cloud Foundry
and built on AWS
GovCloud.

It has baked-in federal
security compliance.

How it works

Your team brings custom
or COTS software.

They use self-service tools
to configure services for
databases, storage, CDN,
etc.

They deploy the
application.

FEC spent $1.4 million
annually on their data
center.

With cloud.gov + AWS,
initial estimates show
$1.2 million in savings
annually.

Federal Election
Commission (fec.gov)

When I talked to a reporter I told
them I’m sleeping well at night, even
though it’s a big project, because it’s
been tested for a year.

- Deputy CIO, cloud.gov agency customer

● Actively developed and
updated
○ Open source Platform as

Service with many active
contributors

● Certified Provider
● Large community

○ Thriving ecosystem with
400+ system integrators
and consultants

● Reduces vendor lock-in
○ Multiple industry

installations
○ Code supports multiple

IaaS providers

Cloud Foundry

Applications that work with cloud.gov also work with
industry Cloud Foundry providers.

Reducing vendor lock-in

Expanding vendor choice

Third-party contractors can bid on how they build
software, as most of the operational concerns have been
offloaded.

Authorizations

FedRAMP JAB P-ATO
Moderate

DISA DoD P-ATO Impact
Level 2

You review
authorizations, but only
assess your own
application.

Simplicity reduces mistakes. Plain-language
configuration makes it harder to make mistakes.

cloud.gov implements the right defaults to reduce risk.
Such as HTTPS and encryption at rest.

Reduce shadow IT. cloud.gov provides a modern self-
service environment, so teams are less likely to use
unapproved cloud infrastructure.

How cloud.gov reduces risk

269

41
15

32
5

se
cu

ri
ty

 c
o

nt
ro

ls 41 shared

269 handled or partially handled by cloud.gov
Some will be shared depending on your application

54 of these are fully inherited from AWS

15 customer

Many controls are handled by cloud.gov

● FedRAMP Joint Authorization Board Moderate P-ATO
○ Full, verified implementation of Moderate NIST 800-53 controls
○ Annual third-party independent audit of controls and penetration

test
○ FedRAMP Continuous Monitoring

● Secure physical infrastructure
○ AWS GovCloud US (FedRAMP JAB High P-ATO)

● GSA operational maturity
○ Position of Public Trust background checks

How we do security

● Architecture that isolates each customer system

● Fast, automated platform patching
○ Infrastructure as code (everything in configuration files)
○ Version control of all code and configuration
○ Continuous integration and continuous deployment
○ Full deployment of upstream CVE patches in 12-24 hours
○ We deploy updates several times a week

● We update without downtime or maintenance
windows
○ Customer applications automatically restart, without downtime

How we do security

Worker Cell

app:
my

router

my.app.cloud.gov

Worker Cell

app:
my

my.app.cloud.gov

Operating system
patching

Pipelines for continuous delivery
of entire platform

A case study:
Federalist

Running a website in the government to inform
the public can be extraordinarily difficult

1. Hosting (traffic surges)
2. Achieving authority to operate (ATO)
3. Maintaining compliance and mitigating new

security issues
4. Ability to update content

Norm: 6+ months to launch, difficult updates

Many agencies have solved this problem with a
CMS (Drupal, Wordpress)

● These can be great solutions, especially for
large sites with many pages and a dedicated
team.

● Other agencies or offices - like open data
teams - can be more like a small business
with a small web server, without dedicated
web staff.

We made Federalist to support the government
equivalent of that small business

● Federalist serves our fellow federal
employees by expertly managing the backend
and compliance work to launch and manage a
website, allowing you to focus your expertise
on your content.

● We do this by leveraging static web hosting.

We made Federalist to support teams across
government and make it easy to publish

● Specifically: an individual program, office,
campaign, or microagency that needs to
launch and manage public web content or
data.

● Examples: College Scorecard (ED), DotGov
Data (GSA), BODs (DHS),
itmodernization.cio.gov

https://collegescorecard.ed.gov/
https://home.dotgov.gov/data/
https://cyber.dhs.gov/
https://itmodernization.cio.gov/

Static sites in brief

● Instead of rendering web pages from a server
on the fly, the pages are pre-built and stored
for the public to access at incredibly low cost.

● Downsides: can’t submit comments or send in
information to a web server via a form (must
use API or add a separate plugin like Disqus).

Federalist is built on compliant platforms

● Infrastructure as a Service:
Amazon Web Services

● Static hosting on S3; very
cost efficient

● CDN and HTTPS support
from CloudFront

● Platform as a Service:
cloud.gov

● cloud.gov brokers the AWS
components; its FedRAMP
JAB certification means
less Federalist compliance
work

● Architecture minimizes
attack surface

1 2 3

Using federalist helps agencies adopt
transformative practices

Live prototyping

Federalist builds out all of
the versions of a site,
allowing people to easily
and quickly experiment,
lowering QA costs.

Continuous integration
and delivery

DevOps best practice to
deploy changes as you
make them instead of
heavy “change control”
processes

Open source

Partners leverage each
other’s code, saving
money and time.

Federalist also allowed
sites to adopt features
from outside sites

1 2 3

Using Federalist Helps Agencies Adopt
Transformative Tools

Cloud hosting

Federalist some partners’
first ever experience with
cloud hosting (start small)

DHS had never put any of
its sites onto modern
cloud hosting (like AWS)
until cyber.dhs.gov

Version control

All website content is
managed via GitHub
instead of via e-mailed
word documents

Edit history easy to audit

IaaS > PaaS > SaaS

Federalist demonstrates
the power of the model;
cloud.gov manages the
vast majority of our ATO
controls (logging,
containization, etc)

1 2 3

Being a Better Buyer from Industry

Vendors only have to
focus on modern front
end development

Using Federalist allows
vendors to focus on what
they are good at:
designing quality sites.

Vendors don’t need
FedRAMP’d hosting

Many vendors don’t have
access to a FedRAMP’d
hosting. To get that, the
government pays a
surcharge.

Allows for smaller
contracts with small
businesses

Using Federalist widens
the vendor pool; single
contractors can and have
supported entire sites
themselves.

Thank you!

Questions?

Federalist:
Contact federalist-inquiries@gsa.gov
or william.slack@gsa.gov

Cloud.gov:
cloud-gov-inquriries@gsa.gov or
peter.burkholder@gsa.gov

mailto:federalist-inquiries@gsa.gov
mailto:william.slack@gsa.gov
mailto:cloud-gov-inquriries@gsa.gov
mailto:peter.burkholder@gsa.gov

Cloud Foundry system components

https://docs.cloudfoundry.org/concepts/architecture/

Platform as a Service
● Build on JAB P-ATO IaaS (AWS GovCloud)
● Provides an app-hosting layer with managed back-end services
● Logical boundaries to isolate deployments for multiple customers
● Organization per customer
● Space per environment

Operations and Recovery

Operations and Recovery

● AC, IA: Control who has access to the system
○ cloud.gov: Control platform roles, provide role system for tenants
○ Customer: Control your tenant roles & any roles in your app

● AU: Ensure logs are stored
○ cloud.gov: Log the platform & provide logging infrastructure for

apps
○ Customer: Configure your app to output logs

● RA: Scan for vulnerabilit ies
○ cloud.gov: Scan platform (including OS, databases, administrative

apps)
○ Customer: Scan your app

Customer responsibility examples

Peter Burkholder

"Any opinions, findings, conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the Networking and Information

Technology Research and Development Program."

The Networking and Information Technology Research and Development

(NITRD) Program

Mailing Address: NCO/NITRD, 2415 Eisenhower Avenue, Alexandria, VA 22314

 Physical Address: 490 L'Enfant Plaza SW, Suite 8001, Washington, DC 20024, USA Tel: 202-459-9674,

Fax: 202-459-9673, Email: nco@nitrd.gov, Website: https://www.nitrd.gov

mailto:nco@nitrd.gov
https://www.nitrd.gov/

	Moving bureaucracies toward modern cloud practices
	Agenda
	Introductions
	Slide Number 4
	The cloud today
	Cloud first
	Uneven implementation
	Missed opportunities
	Mission-focused IT
	Slide Number 11
	Metrics
	Strategies we suggest
	Start small, start core
	Live prototyping
	Version control
	Be agile
	Automated code deployment
	Start with security
	Embrace an IaaS > PaaS > SaaS model
	Agile procurement
	A case study: cloud.gov
	Slide Number 24
	Slide Number 25
	Platform as a Service
	cloud.gov
	How it works
	Federal Election Commission (fec.gov)
	When I talked to a reporter I told them I’m sleeping well at night, even though it’s a big project, because it’s been tested for a year.

Deputy CIO, cloud.gov agency customer
	Cloud Foundry
	Reducing vendor lock-in
	Authorizations
	How cloud.gov reduces risk
	Many controls are handled by cloud.gov
	How we do security
	How we do security
	Operating system� patching
	Slide Number 39
	A case study: Federalist
	Running a website in the government to inform the public can be extraordinarily difficult
	Many agencies have solved this problem with a CMS (Drupal, Wordpress)
	We made Federalist to support the government equivalent of that small business
	We made Federalist to support teams across government and make it easy to publish
	Static sites in brief
	Federalist is built on compliant platforms
	Using federalist helps agencies adopt transformative practices
	Using Federalist Helps Agencies Adopt Transformative Tools
	Being a Better Buyer from Industry
	Thank you!
	Cloud Foundry system components
	Slide Number 52
	Slide Number 53
	Platform as a Service
	Operations and Recovery
	Operations and Recovery
	Customer responsibility examples

