Human-Centric Software Engineering

Gail C. Murphy
Department of Computer Science
University of British Columbia
murphy@cs.ubc.ca

ABSTRACT

Research into how humans interact with computers has a
long and rich history. Only a small fraction of this research
has considered how humans interact with computers when
engineering software. A similarly small amount of research
has considered how humans interact with humans when en-
gineering software. For the last forty years, we have largely
taken an artifact-centric approach to software engineering
research. To meet the challenges of building future software
systems, I argue that we need to balance the artifact-centric
approach with a human-centric approach, in which the fo-
cus is on amplifying the human intelligence required to build
great software systems. A human-centric approach involves
performing empirical studies to understand how software
engineers work with software and with each other, devel-
oping new methods for both decomposing and composing
models of software to to ease the cognitive load placed on
engineers and on creating computationally intelligent tools
aimed at focusing the humans on the tasks only the humans
can solve.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: General—research direc-
tion, interdisciplinary

General Terms

Experimentation, Human Factors

Keywords

human-computer interaction, methods, proceses, tools, arti-
ficial intelligence, machine learning

1. INTRODUCTION

Science fiction writers often speculate about situations in
which software is intelligent, sufficiently so to perhaps even
program itself. Perhaps luckily, we have not yet entered into

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

FoSER 2010, November 7-8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

251

situations where software can determine its own actions or
evolve to meet new needs. Rather, software engineering is,
and should remain, a human-intensive activity. Despite the
central role of humans using the tools, methods and pro-
cesses that support software engineering, the focus of much
software engineering research is on improving artifacts that
support, or are the end goal, of the engineering rather than
on ensuring the abilities of the humans involved in the activ-
ities of engineering the software are amplified to the greatest
degree possible. As one example, a substantial amount of
research considers how to express the abstractions describ-
ing software in models rather than in source code. However,
little attention has been paid to how the software engineers
using the models reason about the eventual system through
the models.

I argue that a human-centric approach to software en-
gineering can help accelerate our ability to build complex
software systems with desired qualities. A human-centric
approach would involve research focused on how humans
work with computational structures and with each other.
A human-centric approach would also consider extensions
to existing research to consider how humans can work with
artifact-centric research results. Finally, such an approach
would involve the development of limited intelligence models
and tools to allow software engineers to focus those aspects
of a development project requiring human creativity and
judgement.

To give a sense of human-centered versus artifact-centered
results, 1 first outline the differences between the two ap-
proaches in terms of vignettes in three areas of software en-
gineering research results: tools, methods and processes. I
then sketch how research agendas might change to accom-
modate human-centered software engineering.

2. HUMAN VERSUS ARTIFACT-CENTRIC

To motivate the need for human-centric software engi-
neering and to clarify its differences from an artifact-centric
approach, I present three vignettes. One vignette is pro-
vided for each of three major areas of software engineering
research: tools, methods and processes. To help make the
differences in approaches stand out when describing these vi-
gnettes, I use Alex as the name of a software engineer using
artifact-centric tools, methods and processes and Henry as
the name of a software engineer using human-centric tools,
methods and processes.



2.1 Tools

Software engineers use many tools every day to help build
the artifacts that are part of the system to be deployed.

One of Alex’s responsibilities is writing code in Java that
will become part of the deployed product. When Alex needs
to trace down a problem in the execution of the deployed
product, he uses a debugger. The debugger requires Alex to
take questions he has about execution and translate them
into detailed artifact-centric actions, such as watching par-
ticular variables or breaking execution at particular points
in methods.

One of Henry’s responsibilities is the same as Alex, writing
code in Java that will become part of the deployed product.
When Henry needs to trace down a problem in the execu-
tion of the deployed product, he uses the Whyline tool [7].
Whyline allows Henry to answer many of his questions di-
rectly by asking why an object has a value that it does or
why a piece of code was not executed. In answer to these
kinds of questions, the Whyline tool provides an explanation
that focuses on information the user is likely to find familiar
or relevant. I claim that the design of the Whyline tool is
human-centric; it answers a human’s questions rather than
forcing the human to think and act in terms of the artifacts
comprising the system.

2.2 Methods

Software engineers also use methods to help design and
build the artifacts that will comprise the system.

Before Alex codes, he uses UML models to express a de-
sign of the intended code. When expressing the design using
UML, Alex breaks different aspects of the design into dif-
ferent models. For example, he uses a UML class diagram
to capture intended Java code structure and he uses a UML
sequence diagram to express how the code will behave to
perform desired functionality. This separation of concerns
between different models helps Alex focus on different as-
pects of the design individually. However, Alex’s goal is to
produce a design that creates a system with a set of desired
behaviours. Reasoning about the behaviours of the system
across these different models requires Alex to think really
hard: he must compose the separated models cognitively to
consider where the separate models compose to provide the
desired system behaviours.

In contrast, Henry is designing a system using Statecharts
with Statemate [4]. The method and supporting tools allow
Henry to execute the design, which enables Henry to deter-
mine if the stated design provides the desired system be-
haviours. The fact that the method allows Henry to execute
the design relieves Henry of the cognitive effort of composing
different aspects of the Statecharts model together. I claim
that the executable model approach is more human-centric;
it allows Henry to expend more of his cognitive effort on the
task of producing a desired design than Alex who wastes
cognitive effort composing models mentally.

2.3 Processes

Software engineers rely on processes to organize the activ-
ities they undertake when building a system.

Alex works in a group that uses a strict waterfall approach
to software development. Alex participates in the design of
the system as part of his team. When the design is consid-
ered complete, as the team is small, the team moves on to the
implementation phase of the project. When problems asso-

252

ciated with incomplete design decisions arise during imple-
mentation, decisions are made primarily by individual team
members rather than the team as a whole reconsidering the
design. Centering the process around artifacts does not al-
low Alex and his team members to easily reconsider design
decisions as a group, leading eventually to a drift between
the design documents and the implementation.

In contrast, Henry works as part of group that uses an
agile approach to software development. Henry and his team
organize their work into sprints that represent deliverable
features. The team meets each day to prioritize work and
consider effects of an individual’s work on the team. The
team is able to deal with decisions that effect the design as
a group when necessary. I claim that this agile process is
more human-centric; it allows Henry and his team mates to
spend their energy on the problems at hand and admits the
need for iteration of humans to produce complex artifacts.

3. A WAY FORWARD

How do we make software engineering and software engi-
neering research more human-centric?

One way is to have better descriptions and theories avail-
able of how software developers work. For example, how do
software engineers think about designs expressed as separa-
ble models? How do software engineers manage inconsisten-
cies that arise between artifacts, such as designs and imple-
mentations? What vocabulary do software engineers use to
explain parts of software artifacts, such as code? What does
this vocabulary tell us about how software engineers reason
about software?

Gathering information to answer these kinds of questions
will require empirical studies into how software engineers
work individually and collaboratively to produce software
systems. Some empirical studies conducted over the past
forty years have started to gather this information. For ex-
ample, Soloway and Ehrlich performed empirical studies to
show that expert programmers use programming plans and
rules of programming discourse that distinguish them from
novice programmers [8]. More recently, Ko and colleagues
analyzed the work of Microsoft software engineers to iden-
tify the information needs of software engineers at work [6].
Many more studies like these are needed to cover the wide
range of activities of software engineers.

Information from such studies can trigger and support the
creation of new tools, methods and processes. For example,
the code bubbles tool for programming [2] addresses the need
for programmers to form, manage and change working sets
of code when making changes to a system, determined from
a previous empirical study [5]. The information gathered
can also be used to form theories about why certain tools,
methods and processes may be more effective than others.
These theories can be used to design approaches that will
be more effective for humans. Storey discusses some ways
in which empirical results and theories for program compre-
hension can be used [9]. More work in developing, evolving
and using theories to spawn the next generation of results is
needed.

Another way to move forward is to improve a software
engineer’s work by aiming to amplify human intelligence.
For example, can we use results from machine learning and
artificial intelligence to increase the information density pre-
sented to software engineers? Can results from human-
computer interaction be used to provide collaborative in-



formation, such as team awareness results, in ways that do
not take a software engineer away from cognitively intensive
tasks, such as fixing bugs? Can we introduce agents into the
tools software engineers use to help sift through, filter and
direct the attention of software engineers to likely pertinent
information?

Relatively few projects focus on amplifying human intel-
ligence. As one example, Fritz and colleagues introduced a
model that maps the knowledge of a software engineer in
a code base based on how the engineer and their team au-
thors and changes code [3]. Such a model can be used in
several ways, including filtering bug notifications to focus
on those related to code for which an engineer has a high
degree-of-knowledge. As another example, Bessey and col-
leagues describe different trade-offs they have made in show-
ing results produced by the Coverity static analysis tool to
humans [1]. Many more possibilities exist to amplify a soft-
ware engineer’s intelligence and focus their effort on tasks
that matter rather than tasks that can be performed by a
machine.

4. SUMMARY

Software is created by humans, often for, humans. In this
position paper, I have argued we need to take an increased
human-centric approach to software engineering and soft-
ware engineering research. Such an approach may involve
increased studies to understand how developers work. Such
an approach may involve the use of techniques from other
disciplines to amplify human intelligence in the cognitively
challenging process of creating large, complex, correct soft-
ware systems.

5. ACKNOWLEDGMENTS

Thanks to Meghan Allen, Thomas Fritz, Emerson Murphy-
Hill and David Notkin for helpful comments on an earlier
version of this position paper.

6. REFERENCES

[1] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton,
S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and
D. R. Engler. A few billion lines of code later: using
static analysis to find bugs in the real world. Commun.
ACM, 53(2):66-75, 2010.

253

[2] A. Bragdon, S. P. Reiss, R. C. Zeleznik, S. Karumuri,
W. Cheung, J. Kaplan, C. Coleman, F. Adeputra, and
J. J. L. Jr. Code bubbles: rethinking the user interface
paradigm of integrated development environments. In
Proc. of International Conference on Software
Engineering, pages 455-464, 2010.

T. Fritz, J. Ou, G. C. Murphy, and E. R. Murphy-Hill.
A degree-of-knowledge model to capture source code
familiarity. In Proc. of International Conference on
Software Engineering, pages 385-394, 2010.

D. Harel, H. Lachover, A. Naamad, A. Pnueli,

M. Politi, R. Sherman, A. Shtull-Trauring, and M. B.
Trakhtenbrot. Statemate: A working environment for
the development of complex reactive systems. IEEE
Trans. Software Eng., 16(4):403-414, 1990.

A. J. Ko, H. H. Aung, and B. A. Myers. Eliciting
design requirements for maintenance-oriented ides: a
detailed study of corrective and perfective maintenance
tasks. In Proc. of International Conference on Software
Engineering, pages 126-135, 2005.

A. J. Ko, R. DeLine, and G. Venolia. Information needs
in collocated software development teams. In Proc. of
International Conference on Software Engineering,
pages 344-353, 2007.

A. J. Ko and B. A. Myers. Debugging reinvented:
asking and answering why and why not questions about
program behavior. In Proc. of International Conference
on Software Engineering, pages 301-310, 2008.

E. Soloway and K. Ehrlich. Empirical studies of
programming knowledge. IEEE Trans. Software Eng.,
10(5):595-609, 1984.

M.-A. D. Storey. Theories, tools and research methods
in program comprehension: past, present and future.
Software Quality Journal, 14(3):187-208, 2006.





