
Toward Evidence-Based  
Low-Defect  
Software Production 

James Kirby Jr.* 
james.kirby@nrl.navy.mil 

US Naval Research Laboratory 
Center for High Assurance Computer Systems 

Tuesday 12 July 2016 

NIST Workshop on Software Measures and Metrics to Reduce Security Vulnerabilities (SwMM-RSV), 12 July 2016, Gaithersburg, MD 

1 7/6/2016 

*With participation by David Weiss. 



Our Big Bet on Computer Software 
Critical building material of early 21st Century 

 • Defense, Government, economy 

• 90% recent military aircraft functionality 
provided by software 

• Autos, phones, cameras, etc. are computers 
driven by complex software embedded with 
sensors & actuators 

• Much National Critical Infrastructure is 
software-intensive 

• Numerous software-intensive Government 
initiatives  
– Health IT, Connected Cities, Machine Learning & AI  

– 3rd Strategic theme of National Strategic 
Computing Initaitive (NSCI): improving software 
productivity  

• HPC software is critical national infrastructure 
– Operational life measured in decades 

– Longer-lived than hardware on which it runs 

– More valuable than hardware on which it runs 

Industry Sectors Developers 
(thousands) 

Manufacturing 147.9 

Wholesale Trade 59.5 

Information 175.2 

Finance & Insurance 99.2 

Professional, Scientific, 
Technical Services 

530.3 

Management of 
Companies & Enterprises 

54.9 

Sectors employing more than 
50,000 software developers 

US Bureau of Labor Statistics. Feb. 2012.  
http://www.bls.gov/emp/ep_table_108.htm 
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Software Production 

• Software development 
– Starting fresh or reusing existing software 

• Software sustainment 
– Evolving software throughout development and 

operational life as needs, understanding, 
technology, and infrastructure inevitably evolve 

• Software assurance 
– Developing confidence that evolving software 

continues to exhibit critical properties 
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Unsatisfactory Software Production Technology 
• Developers and users unable to develop and 

sustain in timely and affordable manner software 
exhibiting low defect rates 
– Significant obstacle to Cybersecurity success 

– Avoiding, mitigating errors significant drag on economy 

– Industry unlikely to adopt slow expensive technology 

• Cybersecurity requires invalidating this common 
wisdom: 

 "Perfect" (bug-free) software is impractically expensive and slow to 
produce, and so the vast bulk of consumer and enterprise software 
products are shipped when they are "good enough" but far from bug-
free. As a consequence, there has been a constant struggle to keep 
attackers from exploiting these chronically inevitable bugs.  
—Crispin Cowan. "Reflections on Decades of Defending Imperfect Software,” NSF WATCH Talk, 17 July 2014. 
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Production of Software-defined Systems1 

• Software-defined Radio, Software-defined Networks, etc. 
– Software intensive systems 

• Domain Experts (engineers) develop models, specifications 
– MATLAB, Python 

• Software developers hand code in C/C++ to the models, specifications 
– Have minimal domain knowledge 
– Receive little oversight by domain experts 

1 Contributed by Dr. Ramesh Bharadwaj, NRL 7/6/2016 5 

• Description of complex software behavior twice developed by hand 
– Opportunity to insert delay, effort, and error into software production 

• Engineers don’t have direct oversight on their delivered products 
– Engineers unexpert in implementation technology 
– Programmers unexpert in domain science/engineering 

• Retrofit in reponse to competitive innovation takes years to decades 
– Competitors innovating more quickly than we can respond 

• Some legacy systems cannot be upgraded 
– Unable to run ever-evolving development tools 

Consequences 



Strawman Software Production 

• Software development 
– Requirements may be developed 

• May record software behavior to some level of detail 

– Design may be developed 
• May record software behavior  
• May record software architecture required to accomplish software behavior 

– Code is developed by hand 
• Records how to accomplish complex software behavior precisely and completely 

– What and why left as an exercise for the reader 

• Evolves as understanding, needs, infrastructure, technology change 
– May invalidate requirements, design which are often not evolved 

• Software sustainment 
– Code evolves as understanding, needs, infrastructure, technology change 
– Requirements and design ignored 

• Code itself and other developers are only reliable sources of information 

• Software assurance 
– Develop confidence that evolving software continues to exhibit critical 

properties without reliance on out-of-date requirements and design  
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Alternative Production Technologies 

• We need improved technology enabling software 
developers and users to develop and sustain low-defect 
software in a timely and affordable manner 
– Technology includes tools, techniques, know how 

– Users include domain scientists, engineers, other subject 
matter experts 
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Alternative Production Technologies 
Replace labor-intensive hand coding 

• Software Product Line Engineering [Campbell 2008] [Weiss and Lai 1999] 
– Software family constructed such that desired members can be quickly produced 

– Decisions distinguish members of family of related software systems  

– Developers and users resolve decisions to produce desired member 

• Model-Driven Development [Kirby 2006, 2013] 
– Developers and users create models from which computer programs are generated 

– Model specifies software behavior for requirements, design, implementation 

• Synthesis Formal Methods [Alur et al 2015] 
– Developers and users develop domain-specific high-level description of desired behavior 

– Synthesis generates correct-by-construction implementation  

• Program Transformations [Baxter and Mehlich 1997] 
– Developers and users guide selection of transformations of formal design to produce 

correct-by-construction code 

• Comprise design decisions implicitly used by currrent software developers 

• Produce complete design and its rationale 
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Evidence-based Approach to Improving 
Software Production Technology 

• Goal/Question/Metric (GQM) [Basili 1993] 

– Define software production measurement in top-
down fashion based on goals 

• Identify goals of software production 

• Refine goals into set of quantifiable questions 

• Questions imply metrics that guide data 
collection 

• Collected data provides evidence-based view  

7/6/2016 9 



Goals of Software Production 

• Reduce defect rate of developed and 
sustained software 

• Reduce time to develop, sustain, and assure 
software 

• Reduce effort to develop, sustain, and assure 
software 

• Widespread insertion of improved software 
production technology 
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Evaluating Software Production 1 
Goals and Questions 

• Reduce defect rate of developed and sustained software 

– What is software defect rate? Where inserted? Removed? 

– What production factors contribute to software defect rate? 

– What knowledge is crucial to sustaining low-defect software? 

• Reduce time to develop, sustain, and assure software 

– How much time is required to develop, sustain, and assure software? 

– How is this time spent? Can we detect wasted time? 

• Reduce effort to develop, sustain, and assure software 

– How much effort is required to develop, sustain, assure software? 

– How is this effort spent? Can we detect wasted, duplicate effort? 

– How does a software production effort make and remember its 
decisions and assumptions? [Hutchins 1995][Aranda and Easterbrook 
2006] 
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Evaluating Software Production 2 
Goals and Questions 

• Widespread insertion of improved software production technology 
– What technology are developers and users using? 

– What national investment is required to insert new technology?  
• Is technology usable by existing software developers and users? 

• What software tools, education, training, expertise required? 

• How well-suited is technology for insertion? 
– Defense, Government, many software-dependent sectors of US economy 

– What software tools are available to support new technology? 
• What computing resources do they require? 

• Do software tools support inevitably evolving software? 

• Do software tools scale? 

• How are software tools sustained? 

• Is there a healthy market for software tools? 
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Software is Critical Building Material 

• Software defects 
– Important source of software vulnerabilities 

– Significant drag on US economy 

– Avoiding and mitigating them waste perhaps 1% GDP 

• Software production technology that enables 
timely, affordable production of low-defect 
software more likely to be adopted 
– Reducing software defects 

– Making government, Defense, & economy more agile, 
innovative, competitive 
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Questions? 
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