
Toward Evidence-Based
Low-Defect
Software Production

James Kirby Jr.*
james.kirby@nrl.navy.mil

US Naval Research Laboratory
Center for High Assurance Computer Systems

Tuesday 12 July 2016

NIST Workshop on Software Measures and Metrics to Reduce Security Vulnerabilities (SwMM-RSV), 12 July 2016, Gaithersburg, MD

1 7/6/2016

*With participation by David Weiss.

Our Big Bet on Computer Software
Critical building material of early 21st Century

 • Defense, Government, economy

• 90% recent military aircraft functionality
provided by software

• Autos, phones, cameras, etc. are computers
driven by complex software embedded with
sensors & actuators

• Much National Critical Infrastructure is
software-intensive

• Numerous software-intensive Government
initiatives
– Health IT, Connected Cities, Machine Learning & AI

– 3rd Strategic theme of National Strategic
Computing Initaitive (NSCI): improving software
productivity

• HPC software is critical national infrastructure
– Operational life measured in decades

– Longer-lived than hardware on which it runs

– More valuable than hardware on which it runs

Industry Sectors Developers
(thousands)

Manufacturing 147.9

Wholesale Trade 59.5

Information 175.2

Finance & Insurance 99.2

Professional, Scientific,
Technical Services

530.3

Management of
Companies & Enterprises

54.9

Sectors employing more than
50,000 software developers

US Bureau of Labor Statistics. Feb. 2012.
http://www.bls.gov/emp/ep_table_108.htm

2 7/6/2016

Software Production

• Software development
– Starting fresh or reusing existing software

• Software sustainment
– Evolving software throughout development and

operational life as needs, understanding,
technology, and infrastructure inevitably evolve

• Software assurance
– Developing confidence that evolving software

continues to exhibit critical properties

3 7/6/2016
[Weiss, Kirby, Lutz 2013]

Unsatisfactory Software Production Technology
• Developers and users unable to develop and

sustain in timely and affordable manner software
exhibiting low defect rates
– Significant obstacle to Cybersecurity success

– Avoiding, mitigating errors significant drag on economy

– Industry unlikely to adopt slow expensive technology

• Cybersecurity requires invalidating this common
wisdom:

 "Perfect" (bug-free) software is impractically expensive and slow to
produce, and so the vast bulk of consumer and enterprise software
products are shipped when they are "good enough" but far from bug-
free. As a consequence, there has been a constant struggle to keep
attackers from exploiting these chronically inevitable bugs.
—Crispin Cowan. "Reflections on Decades of Defending Imperfect Software,” NSF WATCH Talk, 17 July 2014.

4 7/6/2016

Production of Software-defined Systems1

• Software-defined Radio, Software-defined Networks, etc.
– Software intensive systems

• Domain Experts (engineers) develop models, specifications
– MATLAB, Python

• Software developers hand code in C/C++ to the models, specifications
– Have minimal domain knowledge
– Receive little oversight by domain experts

1 Contributed by Dr. Ramesh Bharadwaj, NRL 7/6/2016 5

• Description of complex software behavior twice developed by hand
– Opportunity to insert delay, effort, and error into software production

• Engineers don’t have direct oversight on their delivered products
– Engineers unexpert in implementation technology
– Programmers unexpert in domain science/engineering

• Retrofit in reponse to competitive innovation takes years to decades
– Competitors innovating more quickly than we can respond

• Some legacy systems cannot be upgraded
– Unable to run ever-evolving development tools

Consequences

Strawman Software Production

• Software development
– Requirements may be developed

• May record software behavior to some level of detail

– Design may be developed
• May record software behavior
• May record software architecture required to accomplish software behavior

– Code is developed by hand
• Records how to accomplish complex software behavior precisely and completely

– What and why left as an exercise for the reader

• Evolves as understanding, needs, infrastructure, technology change
– May invalidate requirements, design which are often not evolved

• Software sustainment
– Code evolves as understanding, needs, infrastructure, technology change
– Requirements and design ignored

• Code itself and other developers are only reliable sources of information

• Software assurance
– Develop confidence that evolving software continues to exhibit critical

properties without reliance on out-of-date requirements and design

7/6/2016 6

Alternative Production Technologies

• We need improved technology enabling software
developers and users to develop and sustain low-defect
software in a timely and affordable manner
– Technology includes tools, techniques, know how

– Users include domain scientists, engineers, other subject
matter experts

7 7/6/2016

English Wheel and Moal Coachbuilders
factory and products (moal.com) Mechanical Press and Hyundai Assembly Line

Alternative Production Technologies
Replace labor-intensive hand coding

• Software Product Line Engineering [Campbell 2008] [Weiss and Lai 1999]
– Software family constructed such that desired members can be quickly produced

– Decisions distinguish members of family of related software systems

– Developers and users resolve decisions to produce desired member

• Model-Driven Development [Kirby 2006, 2013]
– Developers and users create models from which computer programs are generated

– Model specifies software behavior for requirements, design, implementation

• Synthesis Formal Methods [Alur et al 2015]
– Developers and users develop domain-specific high-level description of desired behavior

– Synthesis generates correct-by-construction implementation

• Program Transformations [Baxter and Mehlich 1997]
– Developers and users guide selection of transformations of formal design to produce

correct-by-construction code

• Comprise design decisions implicitly used by currrent software developers

• Produce complete design and its rationale

8 7/6/2016

Evidence-based Approach to Improving
Software Production Technology

• Goal/Question/Metric (GQM) [Basili 1993]

– Define software production measurement in top-
down fashion based on goals

• Identify goals of software production

• Refine goals into set of quantifiable questions

• Questions imply metrics that guide data
collection

• Collected data provides evidence-based view

7/6/2016 9

Goals of Software Production

• Reduce defect rate of developed and
sustained software

• Reduce time to develop, sustain, and assure
software

• Reduce effort to develop, sustain, and assure
software

• Widespread insertion of improved software
production technology

10 7/6/2016

Evaluating Software Production 1
Goals and Questions

• Reduce defect rate of developed and sustained software

– What is software defect rate? Where inserted? Removed?

– What production factors contribute to software defect rate?

– What knowledge is crucial to sustaining low-defect software?

• Reduce time to develop, sustain, and assure software

– How much time is required to develop, sustain, and assure software?

– How is this time spent? Can we detect wasted time?

• Reduce effort to develop, sustain, and assure software

– How much effort is required to develop, sustain, assure software?

– How is this effort spent? Can we detect wasted, duplicate effort?

– How does a software production effort make and remember its
decisions and assumptions? [Hutchins 1995][Aranda and Easterbrook
2006]

11 7/6/2016

Evaluating Software Production 2
Goals and Questions

• Widespread insertion of improved software production technology
– What technology are developers and users using?

– What national investment is required to insert new technology?
• Is technology usable by existing software developers and users?

• What software tools, education, training, expertise required?

• How well-suited is technology for insertion?
– Defense, Government, many software-dependent sectors of US economy

– What software tools are available to support new technology?
• What computing resources do they require?

• Do software tools support inevitably evolving software?

• Do software tools scale?

• How are software tools sustained?

• Is there a healthy market for software tools?

12 7/6/2016

Software is Critical Building Material

• Software defects
– Important source of software vulnerabilities

– Significant drag on US economy

– Avoiding and mitigating them waste perhaps 1% GDP

• Software production technology that enables
timely, affordable production of low-defect
software more likely to be adopted
– Reducing software defects

– Making government, Defense, & economy more agile,
innovative, competitive

7/6/2016 13

Bibliography

• Aranda and Venolia. "The secret life of bugs: Going past the errors and omissions in software repositories." Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer Society, 2009.

• Aranda and Easterbrook. "Distributed cognition in software engineering research: Can it be made to work?." Supporting the Social Side
of Large Scale Software Development (2006): 35.

• Alur et al. "Syntax-guided synthesis." Dependable Software Systems Engineering 40 (2015): 1-25.

• Basili. "Applying the Goal/Question/Metric paradigm in the experience factory." Software Quality Assurance and Measurement: A
Worldwide Perspective (1993): 21-44.

• Baxter and Mehlich. "Reverse engineering is reverse forward engineering." Reverse Engineering, 1997. Proceedings of the Fourth
Working Conference on. IEEE, 1997.

• Campbell. "Renewing the product line vision." Software Product Line Conference, 2008. SPLC'08. 12th International. IEEE, 2008.

• Hackbarth, Mockus, Palframan, and Weiss. "Assessing the state of software in a large enterprise." Empirical Software Engineering 15,
no. 3 (2010): 219-249

• Hutchins. "How a cockpit remembers its speeds." Cognitive science 19.3 (1995): 265-288.

• Kirby. “Model-Driven Agile Development of Reactive Multi-Agent Systems.” Proc. 30th Annual Intl. Computer Software and Applications
Conf. (COMPSAC 2006).

• Kirby. “Specifying software behavior for requirements and design.” Journal of Systemics, Cybernetics and Informatics. Oct. 2013.

• LaToza, Venolia, and DeLine. "Maintaining mental models: a study of developer work habits." Proceedings of the 28th international
conference on Software engineering. ACM, 2006.

• Walz, Elam, and Curtis. "Inside a software design team: knowledge acquisition, sharing, and integration." Communications of the ACM
36.10 (1993): 63-77.

• Weiss, Kirby, and Lutz. "Moving Toward Evidence-Based Software Production." Perspectives on the Future of Software Engineering.
Springer Berlin Heidelberg, 2013. 275-298.

• Weiss and Lai. "Software product line engineering: a family based software engineering process." (1999).

• Weiss. “Evidence-Based Software Improvement.” Presentation to NITRD/SDP, 24 June 2010.

14 7/6/2016

Questions?

15 7/6/2016

