NIST Workshop on Software Measures and Metrics to Reduce Security Vulnerabilities (SWMM-RSV), 12 July 2016, Gaithersburg, MD

Toward Evidence-Based
Low-Defect
Software Production

James Kirby Jr.*
james.kirby@nrl.navy.mil
US Naval Research Laboratory
Center for High Assurance Computer Systems
Tuesday 12 July 2016

*With participation by David Weiss.

7/6/2016 1



Our Big Bet on Computer Software
Critical building material of early 215t Century

Defense, Government, economy

90% recent military aircraft functionality
provided by software

Autos, phones, cameras, etc. are computers
driven by complex software embedded with
sensors & actuators

Much National Critical Infrastructure is
software-intensive
Numerous software-intensive Government
initiatives
— Health IT, Connected Cities, Machine Learning & Al
— 3" Strategic theme of National Strategic
Computing Initaitive (NSCI): improving software
productivity
HPC software is critical national infrastructure
— Operational life measured in decades
— Longer-lived than hardware on which it runs
— More valuable than hardware on which it runs

7/6/2016

Sectors employing more than
50,000 software developers

Industry Sectors Developers
(thousands)

Manufacturing 147.9
Wholesale Trade 59.5
Information 175.2
Finance & Insurance 99.2
Professional, Scientific, 530.3

Technical Services

Management of 54.9
Companies & Enterprises

US Bureau of Labor Statistics. Feb. 2012.
http://www.bls.gov/emp/ep_table_108.htm



Software Production

e Software development
— Starting fresh or reusing existing software

e Software sustainment

— Evolving software throughout development and
operational life as needs, understanding,
technology, and infrastructure inevitably evolve

e Software assurance

— Developing confidence that evolving software
continues to exhibit critical properties

[Weiss, Kirby, Lutz 2013]



Unsatisfactory Software Production Technology

* Developers and users unable to develop and
sustain in timely and affordable manner software
exhibiting low defect rates

— Significant obstacle to Cybersecurity success
— Avoiding, mitigating errors significant drag on economy
— Industry unlikely to adopt slow expensive technology

* Cybersecurity requires invalidating this common

wisdom:
"Perfect" (bug-free) software is impractically expensive and slow to
produce, and so the vast bulk of consumer and enterprise software
products are shipped when they are "good enough" but far from bug-
free. As a consequence, there has been a constant struggle to keep

attackers from exploiting these chronically inevitable bugs.
—Crispin Cowan. "Reflections on Decades of Defending Imperfect Software,” NSF WATCH Talk, 17 July 2014.
7/6/2016 4




Production of Software-defined Systems!

* Software-defined Radio, Software-defined Networks, etc.
— Software intensive systems
* Domain Experts (engineers) develop models, specifications
— MATLAB, Python
» Software developers hand code in C/C++ to the models, specifications
— Have minimal domain knowledge
— Receive little oversight by domain experts

Consequences

* Description of complex software behavior twice developed by hand
— Opportunity to insert delay, effort, and error into software production

* Engineers don’t have direct oversight on their delivered products
— Engineers unexpert in implementation technology
— Programmers unexpert in domain science/engineering

* Retrofit in reponse to competitive innovation takes years to decades
— Competitors innovating more quickly than we can respond

 Some legacy systems cannot be upgraded
— Unable to run ever-evolving development tools

! Contributed by Dr. Ramesh Bharadwaj, NRL



Strawman Software Production

e Software development
— Requirements may be developed
* May record software behavior to some level of detail
— Design may be developed
* May record software behavior
* May record software architecture required to accomplish software behavior
— Code is developed by hand

* Records how to accomplish complex software behavior precisely and completely
— What and why left as an exercise for the reader

* Evolves as understanding, needs, infrastructure, technology change
— May invalidate requirements, design which are often not evolved

* Software sustainment
— Code evolves as understanding, needs, infrastructure, technology change

— Requirements and design ignored
* Code itself and other developers are only reliable sources of information

* Software assurance

— Develop confidence that evolving software continues to exhibit critical
properties without reliance on out-of-date requirements and design

7/6/2016



Alternative Production Technologies

 We need improved technology enabling software
developers and users to develop and sustain low-defect
software in a timely and affordable manner
— Technology includes tools, techniques, know how

— Users include domain scientists, engineers, other subject
matter experts

English Wheel and Moal Coachbuilders
factory and products (moal.com) Mechanical Press and Hyundai Assembly Line

7/6/2016 7



Alternative Production Technologies
Replace labor-intensive hand coding

Software Product Line Engineering [Campbell 2008] [Weiss and Lai 1999]

— Software family constructed such that desired members can be quickly produced
— Decisions distinguish members of family of related software systems
— Developers and users resolve decisions to produce desired member

Model-Driven Development [Kirby 2006, 2013]

— Developers and users create models from which computer programs are generated
— Model specifies software behavior for requirements, design, implementation

Synthesis Formal Methods [Alur et al 2015]

— Developers and users develop domain-specific high-level description of desired behavior
— Synthesis generates correct-by-construction implementation

Program Transformations [Baxter and Mehlich 1997]
— Developers and users guide selection of transformations of formal design to produce
correct-by-construction code
* Comprise design decisions implicitly used by currrent software developers
* Produce complete design and its rationale



Evidence-based Approach to Improving
Software Production Technology

Goal/Question/Metric (GQM) [Basili 1993]

— Define software production measurement in top-
down fashion based on goals

ldentify goals of software production
Refine goals into set of quantifiable questions

Questions imply metrics that guide data
collection

Collected data provides evidence-based view



Goals of Software Production

* Reduce defect rate of developed and
sustained software

* Reduce time to develop, sustain, and assure
software

* Reduce effort to develop, sustain, and assure
software

* Widespread insertion of improved software
production technology

7/6/2016 10



Evaluating Software Production 1
Goals and Questions

* Reduce defect rate of developed and sustained software
— What is software defect rate? Where inserted? Removed?
— What production factors contribute to software defect rate?
— What knowledge is crucial to sustaining low-defect software?

* Reduce time to develop, sustain, and assure software
— How much time is required to develop, sustain, and assure software?
— How is this time spent? Can we detect wasted time?

* Reduce effort to develop, sustain, and assure software
— How much effort is required to develop, sustain, assure software?
— How is this effort spent? Can we detect wasted, duplicate effort?

— How does a software production effort make and remember its
decisions and assumptions? [Hutchins 1995][Aranda and Easterbrook

2006]



Evaluating Software Production 2

Goals and Questions

 Widespread insertion of improved software production technology
— What technology are developers and users using?

— What national investment is required to insert new technology?

* Istechnology usable by existing software developers and users?
* What software tools, education, training, expertise required?
* How well-suited is technology for insertion?

— Defense, Government, many software-dependent sectors of US economy

— What software tools are available to support new technology?

What computing resources do they require?

Do software tools support inevitably evolving software?
Do software tools scale?

How are software tools sustained?
Is there a healthy market for software tools?



Software is Critical Building Material

e Software defects
— Important source of software vulnerabilities
— Significant drag on US economy
— Avoiding and mitigating them waste perhaps 1% GDP

* Software production technology that enables
timely, affordable production of low-defect
software more likely to be adopted

— Reducing software defects

— Making government, Defense, & economy more agile,
Innovative, competitive



Bibliography

Aranda and Venolia. "The secret life of bugs: Going past the errors and omissions in software repositories." Proceedings of the 31st
International Conference on Software Engineering. IEEE Computer Society, 2009.

Aranda and Easterbrook. "Distributed cognition in software engineering research: Can it be made to work?." Supporting the Social Side
of Large Scale Software Development (2006): 35.

Alur et al. "Syntax-guided synthesis." Dependable Software Systems Engineering 40 (2015): 1-25.

Basili. "Applying the Goal/Question/Metric paradigm in the experience factory." Software Quality Assurance and Measurement: A
Worldwide Perspective (1993): 21-44.

Baxter and Mehlich. "Reverse engineering is reverse forward engineering." Reverse Engineering, 1997. Proceedings of the Fourth
Working Conference on. IEEE, 1997.

Campbell. "Renewing the product line vision." Software Product Line Conference, 2008. SPLC'08. 12th International. IEEE, 2008.

Hackbarth, Mockus, Palframan, and Weiss. "Assessing the state of software in a large enterprise." Empirical Software Engineering 15,
no. 3 (2010): 219-249

Hutchins. "How a cockpit remembers its speeds." Cognitive science 19.3 (1995): 265-288.

Kirby. “Model-Driven Agile Development of Reactive Multi-Agent Systems.” Proc. 30" Annual Intl. Computer Software and Applications
Conf. (COMPSAC 2006).

Kirby. “Specifying software behavior for requirements and design.” Journal of Systemics, Cybernetics and Informatics. Oct. 2013.

LaToza, Venolia, and Deline. "Maintaining mental models: a study of developer work habits." Proceedings of the 28th international
conference on Software engineering. ACM, 2006.

Walz, Elam, and Curtis. "Inside a software design team: knowledge acquisition, sharing, and integration." Communications of the ACM
36.10(1993): 63-77.

Weiss, Kirby, and Lutz. "Moving Toward Evidence-Based Software Production." Perspectives on the Future of Software Engineering.
Springer Berlin Heidelberg, 2013. 275-298.

Weiss and Lai. "Software product line engineering: a family based software engineering process." (1999).
Weiss. “Evidence-Based Software Improvement.” Presentation to NITRD/SDP, 24 June 2010.



Questions?



