ngh erformance is all about Minimizing
-,1‘ vement

. Ly
A ' *v

Collaborators and Acknowledgements

TH EU

. . . o e s UNIVERSITY
Stencils, Bricks and Geometric Multigrid o utan
Protonu Basu (Facebook), Tuowen Zhao, .

Sam Williams, Brian Van Straalen, Lenny "
Oliker, Phil Colella, Hans Johansen

._\C\\“_,

EXASCALE COMPUTING PROJECT

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S.
Department of Energy’s Office of Science and National Nuclear Security Administration, responsible for
delivering a capable exascale ecosystem, including software, applications, and hardware technology, to
support the nation’s exascale computing imperative.

This research used resources in Lawrence Berkeley National Laboratory and the National Energy Research
Scientific Computing Center, which are supported by the U.S. Department of Energy Office of Science’s
Advanced Scientific Computing Research program under contract number DE-AC02-05CH11231.

Current
Context

Cost of Data Movement

10,000

2008 (45 nm)

ff= 2018(11nm)

pJ per 64-bit operation

1,000
100
10
1
4 : &
Q QS & o & Q@ O S
& & & & & ©
A 9 N K > L
&

Source: P. Kogge and J. Shalf, "Exascale Computing Trends: Adjusting to the "New Normal"'4for
Computer Architecture," in Computing in Science & Engineering, Nov.-Dec. 2013.

Performance Portability Challenge

Can the same program perform well on
diverse supercomputing platforms? (e.g., Top
500 list, top500.0rg)

o “
o -
. ' “ "

| ' #4: Tianhe-2, Intel Xeon Phis
#3: TaihulLight, Sunway

[4,"“..\‘ "Wl #6: Piz Daint,
Lo RRLRL Intel Xeon+P100
GPUs

in Piz Daint in the Svass@ips

What’s Coming Next?

At Zonn; A

% ENERGY

Aurora, Intel Xeon + Intel X Compute

\

. L)) Ul
e -~ -y - - Y

-
i

t
y

“'
g

¥ OAK Rinss
Nath ndd | e wouy

™ l'&yjﬂ FHEi

—
"‘

Fugaku (Riken), ARM + custom optimizatio!

Frontier, AMD EPYC CPU + AMD GPU

Solution:

Data Movement Drives Programming
System Approach

Domain-Specific Programming

System

Key Idea

e Customize optimization for a specific application domain,
easier than general purpose

 More productive for programmers

* Achieve high performance and performance portability
Examples

e Stencils: ExaStencils, YASK, Open Climate Compiler, Pochoir
e Sparse linear algebra: MT1, Bernoulli, Taco

* Tensor contraction: TCE

* Big Data: Map-reduce, Spark

* Deep Learning: TensorFlow, PyTorch

Packed Data Layouts:
a Small Unit of Data and Work

Idea Result
— Domain-specific — Speeds up data
programming system movement

designed around a unit of
data and parallel work

— Data layout for each node

— Reduces need for
data movement

is a collection of these — Reduces on-node

units data movement for
— Flexible organization and communication,

adaptivity addresses improving strong

performance portability scaling

Types of Data Movement
Addressed in this Work

Sources of Data Movement

« H-> : Horizontal data movement, across nodes via interconnect
* V4 : Vertical data movement, through a node’s memory system

Description _______Bample

H—>: NODE 4 NODE Send data from one node’s memory to another’s
V4 : Memory 4 Cache Load data into cache
V4 : Cache 4 Register Load data resident in cache into a (vector) register

V4: Global Memory 4 TLB Lookup page table in memory to cache virtual to
physical address mapping

V4: CPU 4 GPU Load data from GPU memory into host CPU memory
H—: GPU 4% GPU Communicating GPU data to other nodes’ GPUs

11

Packed Data Layout Example:

Stencils

Stencil Computations

* Solve partial differential equations

— Outputs computed from neighbors in
multi-dimensional space

— Multiplied by coefficient

* Access pattern arises in
convolutions too

* Number of inputs related to order
of stencil

— Low order — memory bound
— High order — compute intensive

13

Vertical Data Movement for Stencils

T

]

Example: 13-point stencil

Out[i][j] = coeff*(In[i][j-3]+
In[i][j-2]+ ... In[i][j+3]+
In[i-3][j]+In[i-2][j]+...
In[i+2][j]+ In[i+3][j]);

LT E LT
HEEE EEEE
[TTTETTT]
HEEE EEEE
LI
HEN EEEN

13-point stencil
7 distinct address streams

Vertical data movement impact

e Capacity misses in caches and TLB

e Limits hardware prefetching
effectiveness

* Reordering in registers

Many-core parallelism & tiling make
this worse

14

Horizontal Data Movement for Stencils

AT o Send North {6,7,8}
L. _ElI - a 1 Send South {1,2,3}
. 1=1... Send East {3,5,8)
Send West {1,4,6}

2 4 -

Send Northeast {6}

p=- —1| " T N Send Northwest {8}
.. - Send Southwest {1}
Send Southeast {3}

Packing ghost zones for communication can be as costly

as sending the data on the interconnect, limiting strong
scaling.

15

Brick Library for

Stencil Domain

Solution: Brick Data Layout

Brick Data Layout + Code Generator

e A brick is a mini (e.g., 8x8x8) subdomain
without a ghost zone

* Application of a stencil reaches into other
bricks (affinity important)

* Implemented with contiguous storage
and adjacency lists

[Zhao et al., PP3HPC 2018] [Zhao et al., SC*/

~ e~ A\

Brick Library Example

Operates on brick input
and output arrays In/Out

Accesses outside of brick
b are automatically
resolved

Stenclil for code
generation expressed In
Python

DAG representation for
performance portable
“vector” code generation

Brick<Dim<8,8>, Dim<2,2>>
In(&brickinfo, brickStorage, 0);

for (long b: allbricks)
for (long j=0;)<8; ++))
for (longi=0;i<8; ++i)
Out[b][jl[i] = In[b][j][i] * coeff[0] +

In[b][j][i+1] * coeff[1] +
IN[b][j][i-1] * coeff[2] +
In[b][j+1][i] * coeff[3] +
In[b][j-1][i] * coeff[4];

18

Aggregating Brick Collection

* Collection of neighboring bricks co-located for
thread/node

 Indirection permits different physical layout
from logical organization

brickStorage: Physical 0 1 2 3
Layout
i 0 2 1 3 0
brickInfo: Logical
layout | .. 0 2 1
Adjacency {] { : {0

19

Physical Organization Reduces On-Node
Data Movement for Communication

AT - > 32 - 6 618 ’
. - r—G—prt— 16—l
6 7 8
. 18119 26|27
| , . 16[17) || [24]|25
2|3]s|[11]14]15 1.46< %50
ol14|-|7|12]13
1 2 3 l
1 PR > Linear memory | 1,23 3

Specifying Domain, Layout and Communication in Brick Library:

BrickDecomp<2, BDIM> bDecomp({512,512}, 8); // node’s domain and ghost zone size

bDecomp.initialize(surface3d); // use predefined layout
Brickinfo<2> binfo = BrickStorage bStorageln = binfo.allocate(bSize); // allocateinput storage

for (longt =0; t < TIMESTEP; ++t) { // Communicate
bDecomp.exchange(bStorageln);

21

Single Node Performance

Higher is better Ibaselineltilelbrick ‘

600

Intel Xeon Gold Skylake Intel Xeon Phi KNL ; Nvidia P100

500
400 '

300

GFLOP/s

200

100

T

o S
-

Maximum 1.2x 3.4X 1.6x
Average ~1.06X ~1.52X ~1.33X

Single Node Hypterm:
Bricks Reduce Vertical Data Movement

- ;
l Log Y - Normalized, Lower is better Ubaselinelltilellbrick zero

) 12x
- ';;I F | —
= 18x -0 - __
~ all 1. 30x VX S gl
=, : - - 2.6X
= | 5_X M M o _
o C_G a4
S =
(5 >
> Z 5
[
L o]
c ! 2
y—A4 L i i il 2 i Ll - il i il —ll Al il
i o N e o N 1—3& o 57 F ral Pl s A g
A ATa 1 i _I.L A . \:1 A) \1‘ At " R 2 :}"L +-|~L . ~_-C\"‘ _::‘L :"\L _.-:".'\“L Il_\u ".'\un
A A \'ﬂ‘\' x“;“\" v .;}&“ \u“;k W \.\\1;:‘\ &‘q\“ okt s \\‘\""\
Much better cache locality Much better register reuse

Much less TLB pressure

T. Zhao, P. Basu, S. Williams, M. Hall, and H. Johansen. 2019. Exploiting reuse and
vectorization in blocked stencil computations on CPUs and GPUs. SC’19.

23

7-point Stencil: Bricks Reduce On-Node
Data Movement for Communication

—— MPI_Types — YASK
—— Layout —— Network

256
64
16

Time (ms)
I

0.25

0.0625

512 256 128 64 32 16
subdomain dimension

Intel Xeon Phi KNL (Theta)

Manuscript submitted for publication.

64

Time (ms)

0.125

0.0156

—— MPI_Types"™ —5— Layout"™
—— Layout®® —— Network®"

012 256 128 64 32 16

subdomain dimension

NVIDIA V100 (Summit)

UM — Unified Memory
CA — CUDA Aware

24

Related Work

Summary and Future Work

Generalization of Bricks:
Packed Data Layout

Design data layouts that represent a configurable
unit of work for an architecture

— For data movement
— For parallelism

Build software layer for
— Organizing and parallelizing a collection of such units
— Architecture-specific code generation

Convert from standard data layouts automatically
Ongoing work, dense and sparse tensors

Related Work

Stencil memory hierarchy opts.

Tilingand array CSE [Datta et al.,
SC’08]

Halide [PLDI'13]

GPUs [Zhang et al., CGO’12] [Grosser
et al., CGO’14]

Fusion and array CSE in multigrid
[Basu et al., IPDPS’15]

Packed data layouts

Briquettes [Jayaraj, PhD thesis, 2013]
For SpMV [Bulucet al., IPDPS’11]

For Sparse Tensors [Li et al., SC'18]

For Relativity Calculations[Fernando
et al., SIAM JSC’19]

Stencil communication opt.

Overlappingcommunication &
computation, time skewing
[Wonacott, IPDPS’00]

Communication avoiding[Demmel et
al., IPDPS’08]

MPI derived types to describe
strided ghost zones [Hashmi et al.,

~TPDPS"19]

Stencil vector and register opt.

Vector folding (YASK) [Yount et al.,
WOLFHPC’16]

Associative reordering [Stock et al.,
PLDI'14]

GPU regs. [Rawat et al., PPoPP’18]

Data layouttransformation
[Henretty et al., CC’11]

27

Summary and Future Work

Packed data layouts achieve performance portability,
reducing vertical and horizontal data movement

* Ongoing work
— Deploy brick layout in application framework for stencils

— Demonstrate generality of approach for sparse matrix and
other domains
* Future work
— Develop layout-aware compiler integration for domain-
specific optimization
— Demonstrate performance portability for exascale
platforms as they emerge

"Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Networking and Information

Technology Research and Development Program.”

The Networking and Information Technology Research and Development
(NITRD) Program

Mailing Address: NCO/NITRD, 2415 Eisenhower Avenue, Alexandria, VA 22314

Physical Address: 490 L'Enfant Plaza SW, Suite 8001, Washington, DC 20024, USA Tel: 202-459-9674,
Fax: 202-459-9673, Email: nco@nitrd.gov, Website: https://www.nitrd.gov

mailto:nco@nitrd.gov
https://www.nitrd.gov/

