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Abstract

Traditional control engineering provides mathematical tools for designing control laws for dynamical
systems. Programming languages and software engineering, while rich in techniques for layering and
structuring of complex software with multiple features and concurrency, abstract from real-time and dy-
namics. As software embedded in physical devices gets complex and distributed, the emerging discipline
of hybrid systems that combines control engineering and software science, can provide the foundation
for systematic design. This paper outlines promising research directions for modeling and analysis of
embedded systems for improved design automation and increased safety.

Introduction

An embedded system typically consists of a collection of digital programs that interact with each other and
with an analog environment. Examples of embedded systems include manufacturing controllers, automotive
controllers, engine controllers, avionic systems, medical devices, micro-electromechanical systems, and robots.
As computing tasks performed by embedded devices become more sophisticated, the need for a sound
discipline for writing embedded software becomes more apparent (c.f. [Lee00, HK01]). Model-based design
paradigm, with its promise for greater design automation and formal guarantees of reliability, is particularly
attractive given the following trends.

Software Design Notations. Modern object-oriented design paradigms such as Unified Modeling Lan-

guage (UML) allow specification of the architecture and control at high levels of abstraction in a
modular fashion, and bear great promise as a solution to managing the complexity at all stages of the
software design cycle [BJR97]. There are emerging tools such as RationalRose (see www.rational.com)
that support modeling, simulation, and code generation, and are increasingly becoming popular in do-
mains such as automotive software and avionics.

Control Engineering. Traditionally control engineers have used tools for continuous differential equations

such as MATLAB (see www.mathworks.com) and MATRIXX for modeling of the plant behavior, for
deriving and optimizing control laws, and for validating functionality and performance of the model
through analysis and simulation. This design methodology has strong mathematical foundations, and
leads to robust designs of systems such as cruise control and throttle control, where the primary
complexity is in the continuous dynamics. Tools such as SIMULINK recently augmented the continuous
modeling with state-machine-based modeling of discrete control.
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Formal Specification and Verification. Formal methods for rigorous specification and verification of
correctness requirements have witnessed increased interest and acceptance due to a shift in emphasis
towards lightweight methods that can be automated and used for debugging at early stages of de-
sign [CW96, JR0O0]. In particular, model checking is emerging as an effective technique for debugging
of high-level models (see [CK96] for a survey). Model checkers such as SMV [McM93] and SPIN [Hol97]
have been successful in revealing subtle errors in cache coherency protocols in multiprocessors and com-
munication protocols in computer networks. There are also emerging techniques for extracting models
from code using abstraction. Tools such as Bandera [CDH'00] and SLAM [BR00] have applied predi-
cate abstraction for analysis of C or Java programs. In recent years, the model checking paradigm has
been successfully extended to models with continuous variables [AD94, AHH96] leading to tools such
as UPPAAL [LPY97] and HyTEcH [HHW97].

These trends motivate research in formal modeling and analysis of embedded software systems. We outline a
few research directions of main interest to us in the following section. The ultimate goal is develop tools that
will allow designers to develop embedded systems with interacting multi-modal components with the same
rigor as applied in design of individual controllers. Such tools will dramatically reduce the cost of testing
and maintenance, and also assure increased reliability required in safety-critical applications.

2 Research Themes

2.1 Hybrid Modeling

Traditionally, control theory and related engineering disciplines, have addressed the problem of designing
robust control laws to ensure optimal performance of processes with continuous dynamics. This approach
to system design largely ignores the problem of implementing control laws as a piece of software and issues
related to concurrency and communication. Computer science and software engineering, on the other hand,
have an entirely discrete view of the world, which abstracts from the physical characteristics of the environ-
ment to which the software is reacting to, and is typically unable to guarantee safety and/or performance of
the embedded device as a whole. An embedded system consisting of sensors, actuators, plant, and control
software is best viewed as a hybrid system. There has been a lot of recent research on modeling, control, and
verification of hybrid systems (see [VvS99, LKO0O] for proceedings of the annual workshop). The relevance of
hybrid modeling has been demonstrated in various applications such as coordinating robot systems, engine
control, collision avoidance for autonomous air-vehicles, chemical process control systems, animations, and
biomolecular networks.

An important research issue in hybrid modeling of embedded software is identifying the appropriate
levels of abstractions that can be used to relate the low-level control viewpoint with the high-level software
viewpoint. As an example, consider programming of autonomous mobile robots, say, programming Sony’s
AIBO robots to play soccer (see www.aibo.com). Existing methodology focuses on relatively low-level control
commands such as “go-to-ball” whereas a software designer needs to focus on high-level game-playing strate-
gies, switching between defensive and offensive modes, and communication to coordinate different players.
The high-level model still needs some abstract view of the dynamics of motion, but does not have to worry
about the control inputs to individual joints. Thus, designers of control laws as well as designers of game
strategies need “hybrid” models, but different ones. The whole design can be greatly facilitated by a clear
understanding of layering of hybrid models.

2.2 Modeling Languages

Embedded software is currently written in low-level languages. Tools used by control engineers allow block-
structured, hierarchical, visual design, but do not reflect the state-of-the-art programming language concepts
such as type systems, encapsulation, object-oriented designs, interfaces etc. Even the early models for hybrid
systems such as phase transition systems [MMP91] and hybrid automata [AHH96] were primarily concerned
with formal semantics, and showed little structure. Programming languages, with the notable exception of
the synchronous programming languages such as ESTEREL [BG88], do not adequately deal with time as a
first-class entity. Modeling languages for embedded software can borrow nicely from both traditions.



2.3 Behavioral Interfaces

The notion of interfaces in object-oriented languages is typically based on static types. Since control en-
gineers are used to dealing with mathematical functions that capture continuous dynamics, components in
embedded systems should have behavioral interfaces that capture static types as well as the hybrid dynamics
of the interaction of the component with the environment (see, for instance, the PTOLEMY project [Lee00]).
Such behavioral interfaces can be built for languages that support compositional formal semantics. For-
mal semantics leads to definitions of semantic equivalence (or refinement) of specifications based on their
observable behaviors, and compositional means that semantics of a component can be constructed from
the semantics of its subcomponents. Such formal compositional semantics is a cornerstone of concurrency
frameworks such as CCS [Mil80], and is a prerequisite for developing modular reasoning principles such as
compositional model checking and systematic design principles such as stepwise refinement. Besides the
known difficulties in defining semantics for languages with rich constructs such as inheritance and excep-
tions, the global nature of time makes it challenging to define semantics of hybrid components in a modular
fashion.

2.4 Automated Analysis

The greatest value of model-based design is the opportunity to subject models to useful analysis in early
stages of design to reveal potential errors. A classical and useful way of analysis is simulation. If we couple
hybrid dynamics with stochastic behavior, developing reliable simulation tools itself is an interesting research
problem. We are particularly interested in exploring the potential of model checking for powerful debugging
of embedded software. The state-of-the-art computational tools for model checking of hybrid systems are
of two kinds. Tools such as UppAAL [LPY97] and HyTEcH [HHWO97] limit the continuous dynamics to
simple abstractions such as rectangular inclusions (e.g. & € [1,2]), and compute the set of reachable states
exactly and effectively by symbolic manipulation of linear inequalities. On the other hand, emerging tools
such as CHECKMATE [CK99] and d/dt [ABDMOO0], approximate the set of reachable states by polyhedra
by optimization techniques. Even though these tools have been applied to interesting real-world examples
after appropriate abstractions, scalability remains a challenge, and developing new techniques for efficient
verification of hybrid systems remains an active research area.

3 Relevant Ongoing Projects
3.1 CHARON: Hierarchical Hybrid Modeling

In this project we are designing the modeling language, CHARON, for high-level specification of interacting
embedded systems with an associated suite of analysis tools [ADET01]. CHARON allows visual as well as
textual specifications of structured state machines, and is built on top of Java.

CHARON allows specification of hybrid dynamics. Discrete updates are specified by guarded actions
labeling transitions connecting the modes. Some of the variables in CHARON can be declared analog, and
they flow continuously during continuous updates that model passage of time. The evolution of analog
variables can be constrained by differential constraints, algebraic constraints, and invariants which limit the
allowed durations of flows.

In CHARON, the building block for describing the system architecture is an agent that communicates
with its environment via shared variables. The language supports the operations of composition of agents
to model concurrency, hiding of variables to restrict sharing of information, and instantiation of agents to
support reuse. The building block for describing flow of control inside an atomic agent is a mode. A mode is
basically a hierarchical state machine, that is, a mode can have submodes and transitions connecting them.
Variables can be declared locally inside any mode with standard scoping rules for visibility. Modes can be
connected to each other only via well-defined entry and exit points. We allow sharing of modes so that the
same mode definition can be instantiated in multiple contexts.

CHARON supports observational trace semantics for both modes and agents. The key result is that the set
of traces of a mode can be constructed from the traces of its submodes. This result leads to a compositional
notion of refinement for modes. Suppose we obtain an implementation design I from a specification design



S simply by locally replacing some submode N in S by a submode M. Then, to show I refines S, it suffices
to show that M refines N.

Predicate abstraction has emerged to be a powerful technique for extracting finite-state models from
infinite-state discrete programs. Recently we have developed algorithms and tools for reachability analysis
of hybrid systems by combining the notion of predicate abstraction with recent techniques for approximating
the set of reachable states of linear systems using polyhedra. Given a hybrid system and a set of user-defined
boolean predicates, we consider the finite discrete quotient whose states correspond to the all possible truth
assignments to the input predicates. The tool performs an on-the-fly exploration of the abstract system
by using weakest preconditions to compute abstract transitions corresponding to the discrete switches and
conservative polyhedral approximations to compute abstract transitions corresponding to continuous flows.
Compared to tools such as CHECKMATE and d/dt, this approach requires significantly less computational
resources as the emphasis is shifted from computing the reachable set to searching in the abstract quotient.
We have demonstrated the feasibility of the proposed technique by analyzing a parametric timing-based
mutual exclusion protocol and safety of a simple controller for vehicle coordination.

We have used CHARON for case studies in multirobot coordination and for automotive challenge prob-
lems in the DARPA Mobies program. CHARON has also found unanticipated application domains: for
rapid prototyping of animation strategies in physics-based modeling, and for specification of biological sys-
tems such as luminescence in the bacterium Vibrio Fischeri. More details about CHARON are available at
WWW.cis.upenn.edu/mobies/charon/.

3.2 Scenario-based Requirements

Scenario-based specifications such as message sequence charts offer an intuitive and visual way of describing
design requirements. Such specifications focus on message exchanges among communicating entities in
distributed software systems. Recent standardization of syntax and semantics (MSC’96 or Z.120) by ITU
and integration into modern object-oriented software engineering methodologies such as UML, lead us to
believe that scenario-based specifications will play an increasingly important role in design of concurrent
systems. We are developing analysis techniques and tools for effective use of scenario-based requirements in
software design.

Our initial effort led to a visual tool for detection of race conditions in MSCs [AHP96], and is used by
developers in Lucent (see cm.bell-labs.com/cm/cs/what/ubet/). An interesting recent proposal concerns
the notion of “inference” of scenario-based requirements [AEY00]. When a designer draws multiple scenarios
as requirements, a question of interest is whether the behaviors they have described are realizable by some
distributed implementation. We have presented a language-theoretic framework to formalize such and related
questions. In particular, we have developed a polynomial-time algorithm to derive unspecified and possibly
unwanted scenarios that are “implied” by the specified set of MSCs.

3.3 HERMES: Model Checking of Hierarchical State Machines

Software modeling languages such as STATECHARTS [Har87] use hierarchical state machines for structured
specification of control flow. Our research is aimed at developing techniques for exploiting the hierarchical
structure for reducing the computational requirements of algorithms for state-space exploration. We have
developed a model checker called HERMES for creating, manipulating, and verifying hierarchical models.

For enumerative checking, the key relevant features of a structured model are information hiding and
sharing. The interface of each mode declares the variables that it reads and writes. Our first optimization
avoids recomputing transitions within a mode from two distinct states that agree on the information relevant
to a mode. The second optimization is relevant when the same mode definition is shared within multiple
contexts. We have demonstrated significant savings in computational time at a small price in extra memory
usage in analysis of network protocols such as TCP and PPP.

For symbolic checking, the transition relation is maintained indexed by the modes and their control
points, providing a generalization of the traditional conjunctively partitioned representation. The state-sets
generated during search are also maintained indexed by control points allowing the use of typing information
for early quantification. Our algorithm computes the macro-transitions (i.e., sequences of individual tran-
sitions leading from entry to exit points) of a mode by first computing the strongly-connected-components



of the underlying graph of control points. We have demonstrated the savings of the symbolic checker using
circuits from the ISCAS benchmark.
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