Scientific computing

Volunteer computing

Consumer electronics
● Middleware for volunteer computing
 - Open-source, NSF-funded development
 - Community-maintained
● Server: used by scientists to make “projects”
● Client: runs on consumer devices
 - “attach” to projects
 - fetches/runs jobs in background
Example projects

- Climateprediction.net
- Rosetta@home
- Einstein@home
- IBM World Community Grid
- CERN
Current volunteered resources

- 500,000 active devices
 - BOINC + Folding@home
- 2.3M CPU cores, 290K GPUs
- 93 PetaFLOPS
- 85% Windows, 7% Mac, 7% Linux
Performance potential

- 1 billion desktop/laptop PCs
 - CPUs: 10 ExaFLOPS
 - GPUs: 1,000 ExaFLOPS

- 5 billion smartphones
 - CPUs: 20 ExaFLOPS
 - GPUs: 1,500 ExaFLOPS
Realistic potential

- Study: 5-10% of people who learn about VC would participate
- Devices compute 60% of the time
- So if we can tell the world about VC, could get 100 ExaFLOPS
Cost

cost of 1 TFLOPS/year

- CPU cluster: $1.5M
- Amazon EC2: $4.5M
- BOINC: $0.05M
BOINC job model

- An app can have many versions
- Submit jobs to apps, not versions
- The BOINC scheduler decides what version(s) to use in response to a particular request
Per-platform apps

- Windows/Intel, 32 and 64 bit
- Mac OS X
- Linux/Intel
- Linux/ARM (works for Android too)
Other types of apps

- Multicore
- GPU apps
 - CUDA (Nvidia)
 - CAL (AMD)
 - OpenCL (Nvidia, AMD, Intel)
VM apps

- App is VM image + executable
- BOINC client interfaces via “Vbox Wrapper”
- Advantages:
 - No Win/Mac compilation
 - sandbox security
 - checkpoint/restart using Vbox “snapshots”
- Docker apps
Issues with VM apps

- Host must have VirtualBox installed
 - included with default BOINC install
- To run 64-bit VMs or Docker, host must have VM CPU features enabled
- Doesn’t work with GPUs (currently)
- Doesn’t work with ARM/Android
What workload can VC handle?

- Variable turnaround, so best for bags of tasks
 - but can handle DAGs/workflows too
- Moderate RAM, storage requirements
- Network: server capacity limits
- Data privacy
Areas where VC is useful

- Compute-intensive data analysis
 - particle colliders (LHC)
 - astrophysics
 - genomics
- Simulations of physical systems
 - nanosystems
 - drug discovery, protein folding
 - climate modeling
 - cosmology
BOINC system structure: the original model

- Dynamic “ecosystem” of projects
- Projects compete for computing power by publicizing their research
- Volunteers browse projects, support what they think is important
- Best science gets most computing power
- Public learns about science
Original model hasn’t worked

- Creating a project is too hard
- Creating a project is risky
- It’s hard to publicize VC: too many “brands”
- Volunteers are static
A new model

- Volunteers see “Science@home”, not separate projects
- Can express “science preferences”
- Science@home allocates computing power
New model, part 2

- Instead of single-scientist projects, “umbrella” projects that serve many scientists, and are operated by organizations
- Prototypes under development:
 - TACC
 - nanoHUB
Corporate partnerships

- Past/current:
 - IBM World Community Grid
 - Intel Progress Thru Processors
 - HTC Power to Give
 - Samsung Power Sleep

- In development:
 - Blizzard Entertainment (games)
 - EE (British cell phone provider)
Contact info

- BOINC
 - http://boinc.berkeley.edu
- Me
 - davea@ssl.berkeley.edu