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Blurring the Lines: 
High-End Computing and Data Science

High-End Computing (HEC) encompasses both massive computational and big data 
capability to solve computational problems of significant importance that are beyond 
the capability of small- to medium-scale systems. Data science includes large-scale data 
analytics and visualization across multiple scales of data from a multitude of sources. 
Increasingly on-demand and real-time data intensive computing, enabling real-time 
analysis of simulations, data-intensive experiments and streaming observations, is 
pushing the boundaries of computing and resulting in a convergence of traditional HEC 
and newer cloud computing environments. This panel will explore challenges and 
opportunities at the intersection of high-end computing and data science.

• Which markets will drive the adoption of HEC for Data Science? What new 
applications could arise from this convergence? What game-changers will this 
enable?

• What are the impacts on our current computing ecosystems and the implications 
for future computing ecosystems? What impact will this have on conventional 
workflows, architectures and new memory paradigms (supercomputers versus 
shared cloud computing environments), software tools and workforce 
development?



Panel Logistics

• Panelists:
– Steve Conway, Hyperion Research

– Satoshi Matsuoka, Tokyo Institute of Technology

– Fran Berman, Rensselaer Polytechnic Institute

– Michela Taufer, University of Delaware

– Bob Grossman, University of Chicago

– Rick Stevens, Argonne National Laboratory, University of Chicago

• Logistics:
– Each panelists will have 7-8 minutes to present (50 minutes)

– Question and answer with audience – microphones in room and 
electronic on SC17 website – go to our panel webpage.
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Convergence of HPC Data-Intensive Simulation 

and Analytics (High Performance Data Analysis)

Modeling & Simulation

▪ Existing HPC users
• Larger problem sizes
• Higher resolution
• Iterative methods
• EP jobs to the cloud

(Novartis)

▪ New commercial users
• E.g., SMEs

Advanced Analytics

▪ Existing HPC users
• Intelligence community, FSI
• Data-driven science/

engineering (e.g., biology)
• Knowledge discovery
• ML/DL, cognitive, AI

▪ New commercial users
• Fraud/anomaly detection
• Business intelligence
• Affinity marketing
• Personalized medicine

©Hyperion Research 2017

Drivers:
• Competition
• Complexity
• Time

Drivers:
• Competition
• Complexity
• Time

Convergence 
Market (2020)

$3.5B servers

$1.6B storage

$5.1B total



Forecast:

HPDA Market and ML/DL/AI Methods



HPDA Analytics       New HPC Segments

1. Fraud and anomaly detection.
▪ Government (intelligence, cyber security)

▪ Industry (credit card fraud, cyber security)

2. Affinity Marketing.
▪ Discern potential customers' demographics, buying preferences and

habits.

3. Business intelligence.
▪ Identify opportunities to advance market position and

competitiveness

4. Precision Medicine
▪ Personalized approach to improve outcomes, control costs

©Hyperion Research 2017



AI/Deep Learning Formative Market

MARKET STATUS

▪ HPC has moved to the forefront of DL/AI 
research

▪ Ecosystem (including GPGPUs) formed around 
social media/Web giants

▪ DL needs massive data: not available yet in 
many markets

▪ Lack of standard benchmarks lengthens sales 
process

▪ Need for transparency     HPC simulation!

© Hyperion Research 2017

“The amount of data 

available today is 

miniscule compared 

to what we need for 

deep learning.”

Marti Head, 

GlaxoSmithKline



Game

Google’s DeepMind (AlphaGo) 
defeats the best humans.

“We still can’t explain it…you 
could…review…every parameter in 
AlphaGo’s artificial brain, but even a 
programmer would not glean much 
from these numbers because what 
drives a neural net to make a 
decision is encoded in the billions of 
diffuse connections between nodes.”
Alan Whitfield, robot ethicist, Univ. of 
the West of England

Life

If an autonomous vehicle kills 
pedestrians in an accident…

Automakers, insurance companies 
and auto owners will need to know 
why.

© Hyperion Research



Converging HPC and BD/AI: Tokyo Tech. 
TSUBAME3.0 and AIST ABCI

Satoshi Matsuoka
Professor, GSIC, Tokyo Institute of Technology /

Director, AIST-Tokyo Tech. Big Data Open Innovation Lab /
Fellow, Artificial Intelligence Research Center, AIST, Japan /

Vis. Researcher, Advanced Institute for Computational 
Science, Riken

Convergence Panel
2017/11/14

Denver, Colorado, USA



Characteristics of Big Data and AI Computing

As BD / AI
Graph Analytics e.g. Social Networks 

Sort, Hash, e.g. DB, log analysis 
Symbolic Processing: Traditional AI

As HPC Task
Integer Ops & Sparse Matrices 

Data Movement, Large Memory
Sparse and Random Data, Low Locality

As BD / AI
Dense LA: DNN

Inference, Training, Generation

As HPC Task
Dense Matrices, Reduced Precision 
Dense and well organized neworks

and Data

Acceleration, Scaling Acceleration, Scaling
Acceleration via 
Supercomputers 
adapted to AI/BD

Opposite ends of HPC 
computing spectrum, 
but HPC simulation 
apps can also be 
categorized likewise



JST-CREST “Extreme Big Data” Project (2013-2018)

Supercomputers
Compute&Batch-Oriented

More fragile

Cloud IDC
Very low BW & Efficiency
Highly available, resilient

Convergent Architecture (Phases 1~4) 
Large Capacity NVM, High-Bisection NW

PCB

TSV Interposer

High 
Powered 
Main CPU

Low 
Power 
CPU

DRAM
DRAM
DRAM

NVM/Fl
ash
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Low 
Power 
CPU

DRAM
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NVM/Fl
ash

2Tbps HBM
4~6HBM Channels
1.5TB/s DRAM & 
NVM BW

30PB/s I/O BW Possible
1 Yottabyte / Year

EBD System Software
incl. EBD Object System
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Large Scale 
Metagenomics

Massive Sensors and 
Data Assimilation in 
Weather Prediction

Ultra Large Scale 
Graphs and Social 
Infrastructures

Exascale Big Data HPC 

Co-Design

Future Non-Silo Extreme Big Data Scientific Apps

Graph Store

EBD Bag

Co-Design 13/ 06/ 06 22:36日本地図

1/ 1 ページf ile:/ / / Users/ shirahata/ Pictures/日本地図.svg
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Cartesian Plane

Co-Design
Given a top-class 
supercomputer, 
how fast can we 
accelerate next 
generation big 
data c.f. Clouds?

Bring HPC rigor in 
architectural, 
algorithmic, and 
system software 
performance and 
modeling into big 
data



EBD System Software (Matsuoka-G)

• Big Data Algorithms for Accelerators (GPU and FPGAs,
low level kernels for DNN&Graph)

• Fast and Memory-saving SpGEMM on GPUs

• Accelerating SpMV on GPU  by Reducing Memory
Access

• OpenCL-based High-Performance 3D Stencil
Computation on FPGAs

• Evaluating Strategies to Accelerate Applications
using FPGAs

• Accelerating Spiking Neural Networks on FPGAs

• Directive-based Temporal-Blocking application

• Large Scale Graph Algorithms and Sorting

• No.1 on Graph500 Benchmark, 5 consecutive times
(collab. w/Kyushu-U, Riken etc.)

• Distributed Large-Scale Dynamic Graph Data Store
& Large-scale Graph Colouring (vertex coloring)

• Dynamic Graph Data Structure Using Local-NVRAM

• Incremental Graph Community Detection

• ScaleGraph: Large-scale Graph Processing
Framework w/ User-Friendly Interface

• GPU-HykSort: Large Scale Sorting on Massive GPUs

• XtrSort: GPU out of core sorting

• Efficient Parallel Sorting Algorithm for Variable-
Length Keys

• Big-Data Performance Modeling and Analysis

• Co-locating HPC and Big Data Analytics

• Visualizing Traffic of Large-scale Networks

• I/O vs MPI Traffic Interference on Fat-tree Networks

• ibprof : Low-level Profiler of MPI Network Traffic

• Evaluation of HPC-Big Data Applications in Clouds

• Analysis on Configurations of Burst Buffers

• High Performance Big-Data Programming Middleware

• mrCUDA: Remote-to-local GPU Migration
Middleware

• Transpiler between Python and Fortran

• Hamar (Highly Accelerated Map Reduce)

• Out-of-core GPU-MapReduce for Large-scale Graph
Processing

• DRAGON: Extending UVM to NVMe

• Hierarchical, UseR-level and ON-demand File
system (HuronFS)

• Optimizing Traffic Simulation App (Ex- Suzumura
Group)

• Incremental Graph Community Detection

• DeepGraph

• Exact-Differential Traffic Simulation



METI AIST-AIRC ABCI
as the worlds first large-scale OPEN AI Infrastructure

Univ. Tokyo Kashiwa Campus

• >550 AI-Petaflops
• < 3MW Power
• < 1.1 Avg. PUE
• Operational 2017Q4

~2018Q1

• >550 AI-Petaflops
• < 3MW Power
• < 1.1 Avg. PUE
• Operational 2017Q4

~2018Q1

• ABCI: AI Bridging Cloud Infrastructure
• Top-Level SC compute & data capability for DNN (550 AI-Petaflops)

• Open Public & Dedicated infrastructure for Al & Big Data Algorithms,
Software and Applications – OPEN SOURCING AI DATACENTER

• Platform to accelerate joint academic-industry R&D for AI in Japan



The “Real” ABCI – 2018Q1

• Extreme computing power
– w/ 550 AI-PFlops (likely several 100s AI-Pflops) for AI/ML especially DNN

– several million speedup over high-end PC: 1 Day training for 10,000-Year DNN training job

– TSUBAME-KFC (1.4 AI-Pflops) x 90 users (T2 avg) min

• Big Data and HPC converged modern design
– Not just (AI-)FLOPS, but with BYTES (capacity and bandwidth)

– Leverage Tokyo Tech’s “TSUBAME3” design, but differences/enhancements being AI/BD
centric

• Ultra high BW & Low latency memory, network, and storage
– For accelerating various AI/BD workloads

– Data-centric architecture, optimizes data movement

• Big Data/AI and HPC SW Stack Convergence
– Incl. results from JST-CREST EBD

– Wide contributions from the PC Cluster community desirable.

• Ultra-Green (PUE<1.1), High Thermal (60KW) Rack
– Custom, warehouse-like IDC building and internal pods

– Final “commoditization” of HPC technologies into Clouds



Basic Requirements for AI Cloud System 

PFS
Lustre・

GPFS

Batch Job 
Schedulers

Local 
Flash+3D 

XPoint
Storage

DFS
HDFS

BD/AI User Applications

RDB
PostgreSQ

L

Python, Jupyter Notebook, R etc. + IDL 

SQL
Hive/Pi

g

CloudDB/NoSQ
L

Hbase/MondoDB/Redi
s

Resource 
Brokers

Machine 
Learning 
Libraries

Numerical 
Libraries

BLAS/Matlab

Fortran・C・C++
Native Codes

BD Algorithm 
Kernels (sort 

etc.)

Parallel Debuggers and Profilers

Workflow 
Systems

Graph 
Computing 
Libraries

Deep 
Learning 

Frameworks

Web 
Services

Linux Containers ・Cloud Services 

MPI・OpenMP/ACC・CUDA/OpenCL

Linux OS 

IB・OPA
High Capacity

Low Latency NW

X86 (Xeon, Phi)＋
Accelerators e.g. 
GPU, FPGA, Lake 

Crest

Application

✓ Easy use of various ML/DL/Graph frameworks from 
Python, Jupyter Notebook, R, etc.

✓ Web-based applications and services provision

System Software

✓ HPC-oriented  techniques for numerical libraries, BD 
Algorithm kernels, etc.

✓ Supporting long running jobs / workflow for DL 
✓ Accelerated I/O and secure data access to large data sets
✓ User-customized environment based on Linux containers 

for easy deployment and reproducibility 

OS

Hardware

✓ Modern supercomputing facilities based on commodity 
components



Oct. 2015

TSUBAME-
KFC/DL (Tokyo 
Tech./NEC)
1.4 AI-PF(Petaflops)

Cutting Edge Research AI Infrastructures in Japan
Accelerating BD/AI with HPC (w/accompanying BYTES)
(and my effort to design & build them)

Mar. 2017

AIST AI Cloud
(AIST-AIRC/NEC)
8.2 AI-PF

Mar. 2017
AI Supercomputer
Riken AIP/Fujitsu
4.1 AI-PF

Aug. 2017

TSUBAME3.0 (Tokyo Tech./HPE)
47.2 AI-PF (65.8 AI-PF 
w/Tsubame2.5)

In Production

In Production

In Production
1H 2018

ABCI (AIST-AIRC)
550 AI-PF

IDC under 
construction

1H 2019?

“ExaAI”
~2~3 AI-ExaFlop

Undergoing
Engineering
Study

Also Post-K 
Multi AI-
Exaflops

R&D Investments into world leading 
AI/BD HW & SW & Algorithms and their 
co-design for cutting edge Infrastructure 
absolutely necessary (just as is with 
Japan Post-K and US ECP in HPC)

x5.
8

x5.
8

x11.7

X4~6?
In Construction



Blurring the Lines: High-End 
Computing and Data Science

Dr. Fran Berman

Chair, Research Data Alliance / U.S.

Hamilton Distinguished Professor of CS, RPI



Thinking Big about Data

• Increasing expansion of data science:

– Data expanding functionality and 
increases the potential for innovation in 
the areas it is associated with.

– Data science seen as cross-cutting area 
with impact in virtually every domain 
and sector.  

– Big Data broadly interpreted.

• Goal of Big Data efforts is big insights.

– From a data perspective, HPC is one of 
many technologies needed to drive Big 
Data innovation.

Big 
Data

HPC

Big Data

AI/
ML

HPC

IoT



Data community focused on broad set of 
themes in the Data Life Cycle

https://www.nsf.gov/cise/ac-data-science-report/CISEACDataScienceReport1.19.17.pdf

https://www.nsf.gov/cise/ac-data-science-report/CISEACDataScienceReport1.19.17.pdf


Key areas for data science expansion of interest to NSF
• Data science training and curriculum 

– Where on campus does data science “live”?  

– How can we train new data scientists and 
data-savvy professionals?

• Data science research

– How can we better use data to gain insights?

– How do we make data systems more robust, 
capable, secure?

– What policy, ethics, practice needed to get the 
most from data?

• Data science infrastructure

– How do we strengthen organizational and institutional infrastructure to support data 
science and data analysis?

– What stewardship, preservation, and tools infrastructure is needed to ensure data use, 
re-use and reproducibility?

• Data Futures

– How to encourage innovation for new data-driven areas?

Data Science Development

https://www.nsf.gov/cise/
ac-data-science-
report/CISEACDataScience
Report1.19.17.pdf



Data Futures:  Internet of Things -- New applications focusing on 

enhancing people through technology, and technology through intelligence

Images and articles:  http://postscapes.com/internet-of-things-examples; http://www.cortexdynamo.com/en/buy-robots-and-droids-store/products-
by-companies-and-brands/irobot/home-cleaning-and-maintenance/roomba-automated-vacuum-cleaner; 
http://www.nytimes.com/2016/12/05/business/fashions-future-printed-to-order.html?smprod=nytcore-iphone&smid=nytcore-iphone-share&_r=0

Monitoring

Adaptive Systems

Smart Technologies

Customization / Personalization

Optimization

http://postscapes.com/internet-of-things-examples
http://www.cortexdynamo.com/en/buy-robots-and-droids-store/products-by-companies-and-brands/irobot/home-cleaning-and-maintenance/roomba-automated-vacuum-cleaner
http://www.nytimes.com/2016/12/05/business/fashions-future-printed-to-order.html?smprod=nytcore-iphone&smid=nytcore-iphone-share&_r=0


Blurring the Lines

• Data goal (insight) vs. HPC goal (scale)

– Lines blurred when scale is needed for insight [private sector]

– Lines blurred when data a stakeholder priority [academics]

– Lines blurred when the problem best solved with data volume and at scale (e.g. 
earthquake simulation) [users]

– Lines blurred when tools, infrastructure, technologies relevant to a broader set 
of environments, problems, users

• Optimizing for innovation:

– What are the goals?

– Who are the beneficiaries?

– What are the metrics of success?

• Backwards engineering from problems blurs technology silos

• Backwards engineering from leadership expectations strengthens silos



Challenges in Big Data Computing 
on HPC Platforms

Michela Taufer

Computer and Information Sciences

University of Delaware

Newark, Delaware, USA



The Cost of Data Movement

25

• Today’s floating point operations are inexpensive

In 167 cycles can do 2672 DP Flops

Local storage

Parallel File System

• Data movement is very expensive
Courtesy of Jack Dongarra, UTK and ORNL, 2017

Registers

L1  cache

Main memory

L2 cache

L3 cache



Perspectives

The scientist:

“Storage technologies are advancing […] and it is really not clear 
at all [to me] that especially distributed storage platforms would 
not be able to handle […] petabyte data sets”

The computer architect:

“[…] there will be burst buffers on the DOE machines which will 
give applications much faster I/O […]”

Anonymous Feedback



Based on: Liu, N, Cope, J, Carns, P, Carothers, C, Ross, R, Grider, G, Crume, A, 

Maltzahn, C . On the Role of Burst Buffers in Leadership-class Storage 
Systems. MSST/SNAPI 2012

• Burst Buffers are not the
magic I/O silver bullet
▪ I/O contention still a problem

if we exceed the BB capability

▪ BBs do NOT help uploading
data from storage for analysis
and visualization

• The next  “true” revolutions:
▪ Algorithms for in situ and in

transit analytics including ML

▪ Workflows for compute and
data integration

The Burst Buffer
“Revolution”



In-situ and In-transit 
Analysis

AnalysisAnalysisSimulationSimulation

Node 1 Node 2 Node 3

Network Interconnect

Core 1 Core 4

Core 7 Core 8

Core 1 Core 1

Core 5 Core 6

SimulationSimulation

N
o

d
e 

1

Analysis

Sh
ar

ed
 M

em
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ry

Bennett, Janine C., et al. "Combining in-situ and in-transit processing to 
enable extreme-scale scientific analysis." High Performance Computing, 
Networking, Storage and Analysis (SC), 2012 International Conference for. 
IEEE, 2012.

Abbasi, Hasan, et al. "Datastager: scalable data staging services for petascale
applications." Cluster Computing 13.3 (2010): 277-290.



Workflows for Compute+Data

“The inspiral and merger of two neutron stars, as 
illustrated here, should produce a very specific 
gravitational wave signal, but the moment of the 
merger should also produce electromagnetic radiation 
that's unique and identifiable as such.”, credit LIGO

First 

detection 

workflow

statistics



Blurring the Lines 
High-End Computing & Data Science:

The Data Commons Perspective

Robert L. Grossman

University of Chicago

& Open Commons Consortium

SC 17 
November 15, 2017



Streaming 
analytics

Batch 
analysis

Data 
integration

Reanalysis

Storage 
only

Duration of 
ingest

Duration of 
computation

Duration of 
project

Duration of 
dependent 
projects

Digital 
archives

Streamin
g 

analytics

HPC

Data Intensive Computing

Data archives

Data science and HPC have 
different trade offs

1. This is why data 
science platforms have 
different trade offs than 
simulation science 
platforms. 

Adapted from: Future Directions for NSF Advanced Computing Infrastructure to Support U.S. Science and Engineering in 2017-2020, National Academy Press, 
DOI: 10.17226/21886, 2016

Type of analysis

Duration of analysis



Performance

Number of systems

Trade offs favor compute Trade offs favor data

Separate architectures

Converged architectures

Commodity 
architectures

Department & Division Scale

National Scale

Leadership Scale

Simulation 
science 
leadership

Data 
science 
leadership

Two Branscomb Pyramids

2. This is an
important priority
for leadership in
data science.



Data Commons

Data commons co-locate data, storage and computing infrastructure 
with commonly used services, tools & apps for analyzing and sharing 
data to create an interoperable resource for the research community.*

*Robert L. Grossman, Allison Heath, Mark Murphy, Maria Patterson and Walt Wells, A Case for Data Commons Towards Data Science as a 
Service, IEEE Computing in Science and Engineer, 2016.  Image: a Google data center from: www.google.com/about/datacenters/.

Data commons are 
systems that manage, 
analyze and share the 
data in a discipline or 
field.

3. Think of large 
scale data 
commons as  
national scale 
platforms for data 
science.



NCI Genomic Data Commons*

• Launched in 2016 
with over 4 PB of 
data.  Over 10 PB 
today.

• Used by 1500 -
2000+ users per 
day.

• Based upon an 
open source 
software stack that 
can be used to 
build other data 
commons.

*See: NCI Genomic Data Commons: Grossman, Robert L., et al. "Toward a shared vision for cancer 
genomic data." New England Journal of Medicine 375.12 (2016): 1109-1112. 







• Supports large data with
cloud computing

• Researchers can analyze data
with collaborative tools
(workspaces) – i. e. data
does not have to be
downloaded)

• Data repository
• Researchers

download data.

Databases

Data Clouds
Data Commons

• Supports large data
• Workspaces
• Common data models
• Core data services
• Harmonized data
• Governance

1982 - present

2010 - 2020

2014 - 2024

Platforms for data science
5. Both data clouds
and data commons
will benefit from HEC,
especially as it moves
to the data center.



“Exascale:
Simulation, Data and Learning”

Rick Stevens

Argonne National Laboratory

The University of Chicago

Crescat scientia; vita excolatur



• Mix of applications is changing

• must support ⟹ Simulation, Data Analytics, 
and Machine Learning “AI”

• Many projects are combining all three 
modalities
– Cosmology

– Cancer

– Materials Design

– Climate

– Drug Design

Big Picture 



Aurora 21 

• Argonne’s Exascale System

• Balanced architecture to support three pillars

– Large-scale Simulation (PDEs, traditional HPC)

– Data Intensive Applications (science pipelines)

– Deep Learning and Emerging Science AI

• Enable integration and embedding of pillars

• Integrated computing, acceleration, storage

• Towards a common software stack



Argonne Targets for Exascale

Simulation Applications
• Materials Science
• Cosmology
• Molecular Dynamics
• Nuclear Reactor

Modeling
• Combustion
• Quantum Computer

Simulation
• Climate Modeling
• Power Grid
• Discrete Event Simulation
• Fusion Reactor Simulation
• Brain Simulation
• Transportation Networks

Big Data Applications
• APS Data Analysis
• HEP Data Analysis
• LSST Data Analysis
• SKA Data Analysis
• Metagenome Analysis
• Battery Design Search
• Graph Analysis
• Virtual Compound Library
• Neuroscience Data

Analysis
• Genome Pipelines

Deep Learning Applications
• Drug Response Prediction
• Scientific Image Classification
• Scientific Text Understanding
• Materials Property Design
• Gravitational Lens Detection
• Feature Detection in 3D
• Street Scene Analysis
• Organism Design
• State Space Prediction
• Persistent Learning
• Hyperspectral Patterns



Differing Requirements?

Simulation Applications

• 64bit floating point
• Memory Bandwidth
• Random Access to Memory
• Sparse Matrices
• Distributed Memory jobs
• Synchronous I/O multinode
• Scalability Limited Comm
• Low Latency High Bandwidth
• Large Coherency Domains

help sometimes
• O typically greater than I
• O rarely read
• Output is data

Big Data Applications

• 64 bit and Integer
important

• Data analysis Pipelines
• DB including No SQL
• MapReduce/SPARK
• Millions of jobs
• I/O bandwidth limited
• Data management limited
• Many task parallelism
• Large-data in and Large-

data out
• I and O both important
• O is read and used
• Output is data

Deep Learning Applications

• Lower Precision (fp32,
fp16)

• FMAC @ 32 and 16 okay
• Inferencing can be 8 bit
• Scaled integer possible
• Training dominates dev
• Inference dominates pro
• Reuse of training data
• Data pipelines needed
• Dense FP typical SGEMM
• Small DFT, CNN
• Ensembles and Search
• Single Models Smallish
• I more important than O
• Output is models



Aurora 21 Exascale Software

• Single Unified stack with resource allocation and
scheduling across all pillars and ability for
frameworks and libraries to seamlessly compose

• Minimize data movement: keep permanent data
in the machine via distributed persistent memory
while maintaining availability requirements

• Support standard file I/O and path to memory
coupling for Sim, Data and Learning

• Isolation and reliability for multi-tenancy and
combining workflows
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"Any opinions, findings, conclusions or recommendations 
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