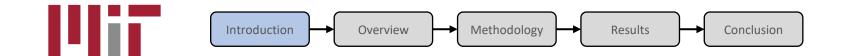
A brief comparison of the next generation of Satellite Communications

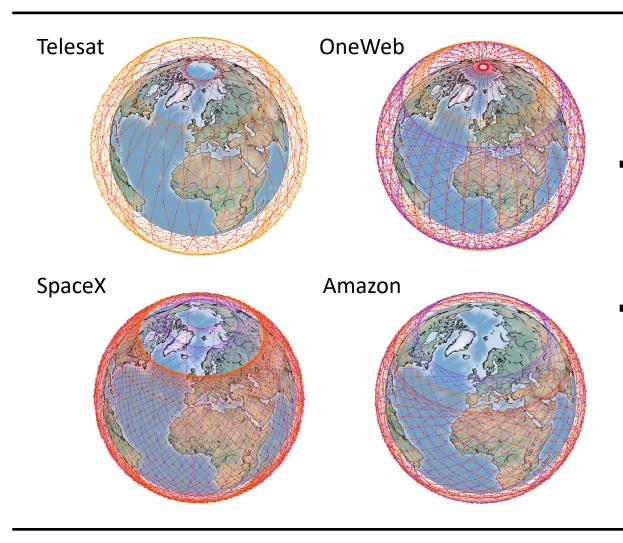
Nils Pachler (pachler@mit.edu)

Massachusetts Institute of Technology

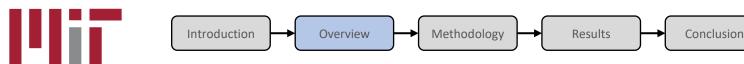
Based on: An Updated Comparison of Four Low Earth Orbit Satellite Constellation Systems to Provide Global Broadband (Nils Pachler, Inigo del Portillo, Edward F. Crawley, Bruce G. Cameron), In *IEEE International Workshop*, 2021.

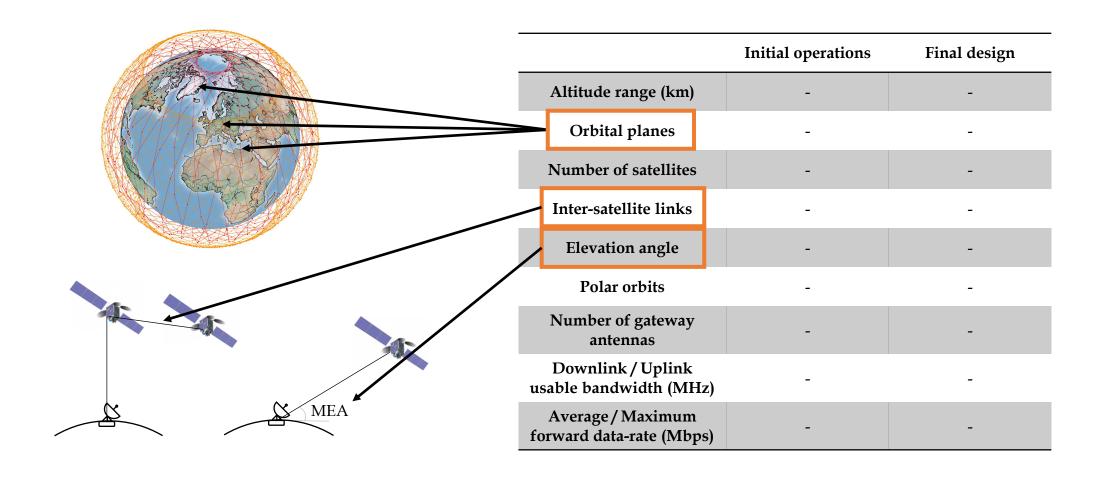
Introduction

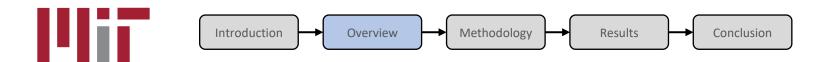

SpaceX launches its 17th batch of Starlink internet relay satellites


The New York Times SpaceX Launches 60 Starlink Internet Satellites Into Orbit

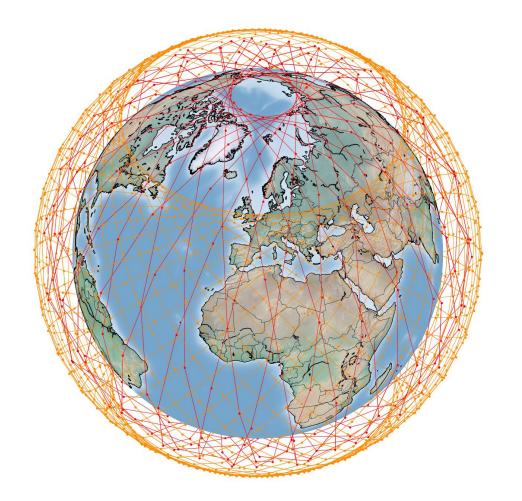
Amazon has planes, drones and now...satellites?


- Over the past few years, many companies have applied for non-geosynchronous orbit (NGSO) mega-constellations to offer global broadband access from space.
- The different companies attempt to service the communications market with different strategies: LEO / MEO, polar / inclined, thousands / tens of satellites
- What are the technical characteristics and performance of each design?

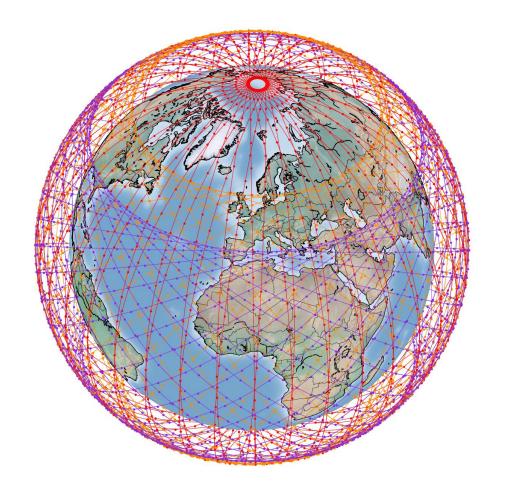

The 4 mega-constellations



- From all the different companies attempting to operate in non-geosynchronous orbits (NGSO), four breach the thousand-satellite mark: Telesat, OneWeb, SpaceX, and Amazon
- Each company proposes a different design that combine different types of orbits, payload characteristics, and number of satellites



Parameter description

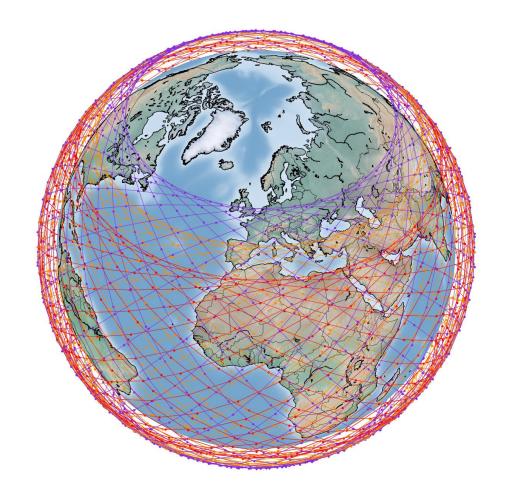

Telesat

	Initial operation	ons	Final design		
Altitude range (km)	1,015-1,325				
Orbital planes	26		67		
Number of satellites	298		1,671		
Inter-satellite links		Yes			
Elevation angle		10			
Polar orbits		Yes			
Number of gateway antennas		2]		
Downlink / Uplink usable bandwidth (GHz)		1.8 / 2.1			
Average / Maximum forward data-rate (Mbps)		25.9 / 34.4	4		


OneWeb

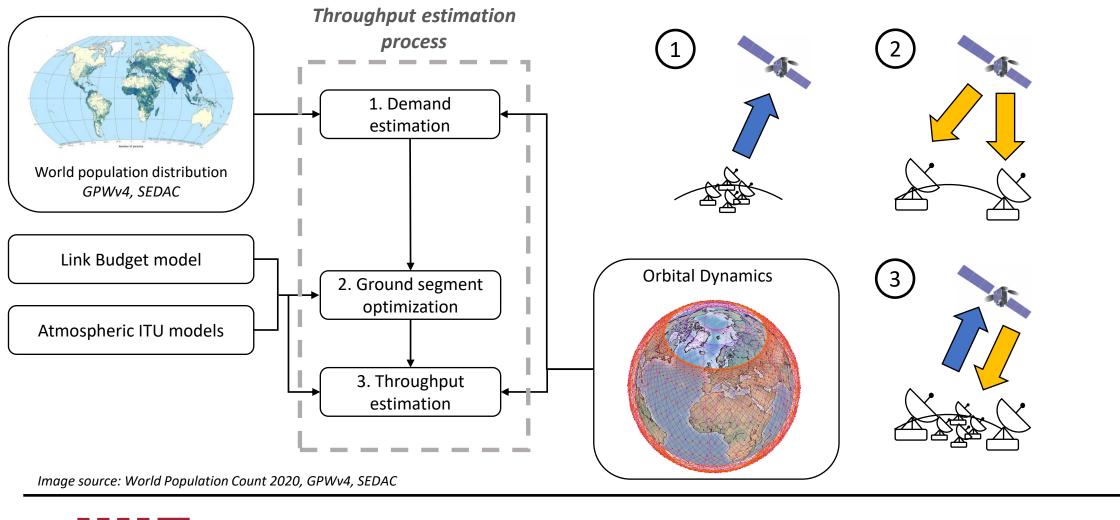
	Initial operations	Final design			
Altitude range (km)	1,20	00			
Orbital planes	20	100			
Number of satellites	716	6,372			
Inter-satellite links	No	Undefined			
Elevation angle	25				
Polar orbits	Yes				
Number of gateway antennas	1				
Downlink / Uplink usable bandwidth (GHz)	1.3 / 2.1				
Average / Maximum forward data-rate (Mbps)	8.80 / 9.97	17.0 / 19.7			

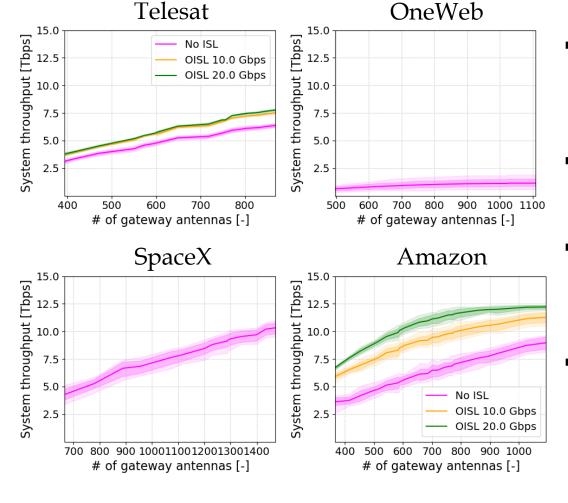
SpaceX



	Init	ial operatio	ons	Final design	
Altitude range (km)			540 - 570		
Orbital planes		72		190	
Number of satellites		1,584		4,408	
Inter-satellite links		No		Yes	
Elevation angle	25				
Polar orbits	Yes				
Number of gateway antennas	1				
Downlink / Uplink usable bandwidth (GHz)	1.3 / 2.1				
Average / Maximum forward data-rate (Mbps)	13.7 / 19.7				

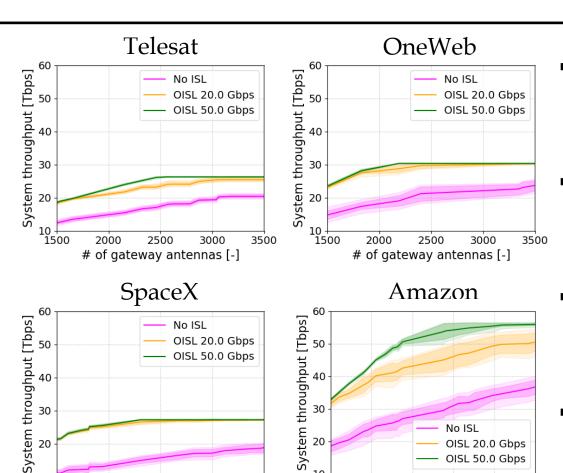
Introduction Overview Methodology Results Conclusion


Amazon


	Initial operations	Final design			
Altitude range (km)	590 - 630				
Orbital planes	17	98			
Number of satellites	578	3,236			
Inter-satellite links	Undefined				
Elevation angle	3	35			
Polar orbits	1	No			
Number of gateway antennas		2			
Downlink / Uplink usable bandwidth (GHz)	2.5	/ 2.5			
Average / Maximum forward data-rate (Mbps)	48.1	/ 50.8			

Methodology

Results: Initial constellations



- Telesat achieves **7.52 Tbps (25 Gbps / sat.)** maximum throughput when using 20 Gbps ISL, thanks to the **dual feeder connection** and **low minimum elevation angle**.
- OneWeb only achieves **1.44 Tbps (2.3 Gbps / sat.)** due to **less flexibility in their satellite design**.
- Despite using around 1,600 satellites (5x Telesat's number) SpaceX only achieves 10.3 Tbps (6.5 Gbps / sat.) maximum throughput due to the non-usage of ISL.
- Amazon achieves the highest throughput when using 20 Gbps ISL (12.5 Tbps, 22 Gbps / sat.), but obtains significantly less capacity (8.97 Tbps) when not using it.

ISL: Inter-Satellite Links

Results: Final constellations

System t

10 | 1500

2000

2500

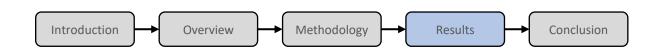
of gateway antennas [-]

- Telesat achieves **25.4 Tbps maximum throughput** when using 20 Gbps ISL, which they can achieve with about 2500 gateway antennas.
- Thanks to a more flexible satellite design and a larger **network**, OneWeb their manages to increase throughput to 30.3 Tbps.
- SpaceX improves previous results by 4 Tbps thanks to the combination of lower altitude and lower minimum elevation angle.
- Despite being second-to-last in number of satellites, Amazon achieves the highest throughput at 53.4 Tbps when using 20 Gbps ISL. However, they suffer a 25% loss (to 41.4 Tbps) when not using it.

ISL: Inter-Satellite Links

2000

2500


of gateway antennas [-]

3000

3500

30

10 | 1500

No ISL

3000

OISL 20.0 Gbps OISL 50.0 Gbps

3500

Results: Satellite utilization

Initial constellation

	Telesat	OneWeb	SpaceX	Amazon	
ISL (Gbps)	20	0	0	0	20*
# of sat.	298	716	1,584	5'	78
Max. Throughput (Tbps)	7.52	1.44	10.3	8.97	12.5
Avg. data-rate per sat. (Gbps)	25.2	2.01	6.50	15.5	19.6
Max. data-rate per sat. (Gbps)	34.4	9.97	19.7	50	0.8
Satellite utilization (%)	73.4	20.2	33.0	30.5	38.5

Final constellation

	Telesat	OneWeb		SpaceX Ama		azon
ISL (Gbps)	20	0	20*	20	0	20*
# of sat.	1,671	6.3	372	4,408	3,2	236
Max. Throughput (Tbps)	25.4	26.9	30.3	27.2	41.4	53.4
Avg. data-rate per sat. (Gbps)	15.2	4.22	4.76	6.16	12.8	16.5
Max. data-rate per sat. (Gbps)	34.4	19).7	19.7	50).8
Satellite utilization (%)	44.3	21.4	24.2	31.3	25.2	32.5

^{*} Note: Hypothesized values since OneWeb and Amazon don't specify if they will use ISL

- Telesat has the **highest satellite utilization** thanks to their dual feeder connection, low minimum elevation angle and higher altitude.
- Despite doubling the data-rate per satellite,
 OneWeb utilization is not improved due to the higher data-rate capacity of their final satellites.
- SpaceX manages to achieve a utilization above 30% thanks to their low minimum elevation angle.
- Amazon's satellite utilization is similar to SpaceX due to the similarities in orbital configuration and minimum elevation angle. However, they suffer a 7% drawback when not using ISL.

ISL: Inter-Satellite Links

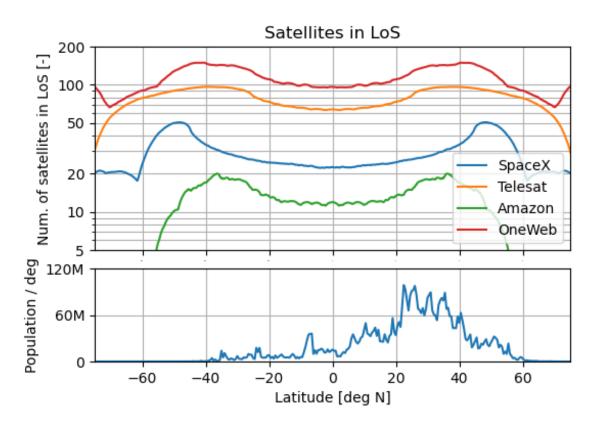
Conclusions

- **Telesat** achieves a **high throughput** and **high satellite utilization** thanks to three factors: dual gateway antenna, low minimum elevation angle, and usage of ISL.
- Despite OneWeb achieving the lowest throughput in the initial constellation, the combination of an improved satellite design and a larger network allows OneWeb to achieve higher throughput than Telesat and SpaceX in their final architecture.
- SpaceX improves prior results thanks to the combination of lower minimum elevation angle and lower altitude.
- Amazon's throughput is the highest of the four systems. However, they also need the largest ground segment with more than 4,000 gateway antennas.
- Both OneWeb and Amazon experience significantly lower throughput if they choose not to use ISL. They could achieve 13% and 25% increase in capacity by using 20 Gbps ISL.

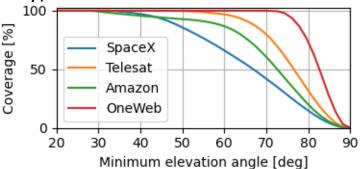
ISL: Inter-Satellite Links

Thank you!

A brief comparison of the next generation of Satellite Communications


Nils Pachler (pachler@mit.edu)

Massachusetts Institute of Technology


Based on: An Updated Comparison of Four Low Earth Orbit Satellite Constellation Systems to Provide Global Broadband (Nils Pachler, Inigo del Portillo, Edward F. Crawley, Bruce G. Cameron), In *IEEE International Workshop*, 2021.

Minimum elevation angle discussion

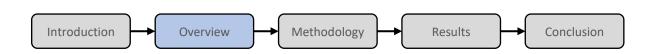
- According to the minimum elevation angle (MEA) specified in the filings, Telesat, OneWeb, and SpaceX have a large number of satellites in line of sight (LoS)
- However, using a low elevation angle results in low throughput.
- For the final designs, we estimated the MEA that will likely be used in operations by finding the maximum MEA that guarantees full coverage (40°, 70°, 35°, and 35° for Telesat, OneWeb, SpaceX, and Amazon, respectively).

MEA: Minimum elevation angle

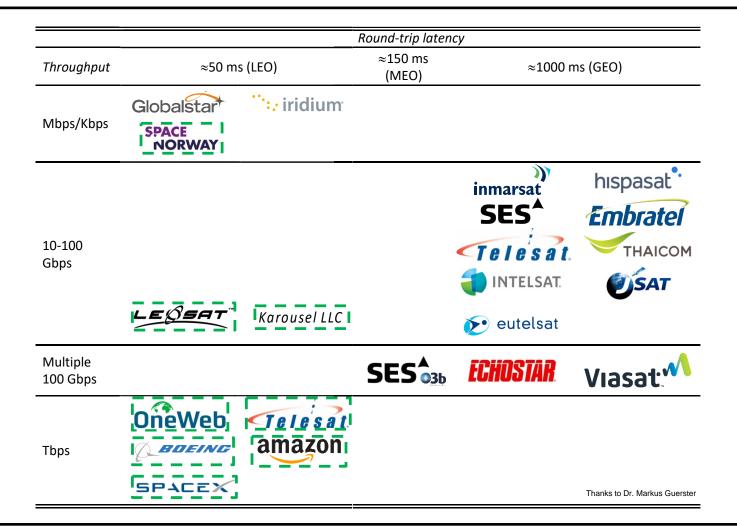
Constellation overview

Constellation design

	Altitude	Initial design			Final design			UT min.	Uses
System	range (km)	Planes	# of sat.	ISL	Planes	# of sat.	ISL	elevation angle (°)	polar orbits?
Telesat	1,015 - 1,325	26	298	Yes	67	1,671	Yes	10	Yes
OneWeb	1,200	20	716	No	100	6,372	Undef.	25	Yes
SpaceX	540 - 570	72	1,584	No	190	4,408	Yes	25	Yes
Amazon	590 - 630	17	578	Undef.	98	3,236	Undef.	35	No

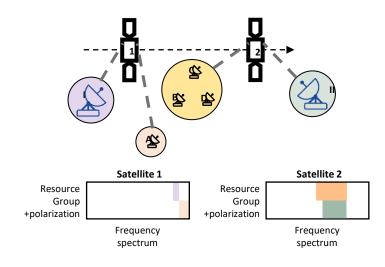

Satellite design

System	# of simultaneous gateway antennas	Avg. forward data-rate (Gbps)	Max. forward data-rate (Gbps)	
Telesat	2	25.9	34.36	
OneWeb*	1	8.80 (I) 17.0 (F)	9.97 (I) 19.7 (F)	
SpaceX	1	13.7	19.7	
Amazon	2	48.1	50.8	


^{*} Note: OneWeb's initial (I) and final (F) data-rate per satellite are different since they specify different satellite designs

UT: User Terminals
ISL: Inter-Satellite Links

New entrants are aiming to disrupt the landscape



Disruptors Incumbents

Dynamic Resource Management

One of the most challenging problems for mega-constellations is frequency assignment:

From an operation perspective, we must

For each beam (000s of beams),

decide which resource group, polarization, and beamchannels to use

in both uplink and downlink

while respecting frequency, handover, and gateway constraints

and mobile users' constraints

In addition, we look for

Frequency Plans that minimize DC power consumption

and the capacity to make changes to the plan in real-time if necessary

Beam pointing Satellite Routing Gateway Routing Frequ. assign.

With thanks to Juan Jose Garau Luis

Power

allocation

"Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Networking and Information Technology Research and Development Program."

The Networking and Information Technology Research and Development (NITRD) Program

Mailing Address: NCO/NITRD, 2415 Eisenhower Avenue, Alexandria, VA 22314

Physical Address: 490 L'Enfant Plaza SW, Suite 8001, Washington, DC 20024, USA Tel: 202-459-9674,

Fax: 202-459-9673, Email: nco@nitrd.gov, Website: https://www.nitrd.gov

