
Maturity is also about the Capability to Conform

the Process to the Right Context!
Mira Kajko-Mattsson

School of Information and Communication Technology
Royal Institute of Technology

Sweden
+46-8-16 16 70

 mekm2@kth.se

ABSTRACT
Organizations, their businesses and contexts are multi-dimensional,

diverse, and very complex today. Hence, creating homogenous

process models for managing them may not always be an optimal

solution. Instead, organizations should be able to tailor their

processes to the formality level required for the context at hand. In

this paper, we claim that the organizational maturity is not only

about how organizations are capable to manage their processes. It is

also about how capable they are in adapting them to specific

contexts and business needs. We also suggest Context-Driven

Process Orchestration Method (CoDPOM), based on the concept of

practice choreography and process orchestration. The CoDPOM’s

role is to aid software practitioners in identifying process needs and

in recognizing waste which, in turn, would aid them in adapting

their software processes to specific contexts, business needs and

formality levels.

Categories and Subject Descriptors
D.2.9 [Management]: Software Process Models.

General Terms
Management, Documentation.

Keywords
Software process orchestration, practice choreography, silver bullet,
adaptation capability, process backbone, context-driven process
orchestration method (CoDPOM), waste, leanness, agility.

1. I"TRODUCTIO"
Companies have many processes that are run in parallel and/or in

sequence. To manage them, they have defined homogeneous

organization-wide generic process models and guidelines to be

reused in various project and non-project related contexts. Soon,

however, they have realized that the process contexts strongly vary

and that there is no such thing as one homogeneous software

process model that fits all the heterogeneous contexts.

Figure 1. CoDPOM components.

To embrace heterogeneity, software organizations have created

many process variants that are dedicated to various needs,

development styles, product complexities, process formalities,

cultures, and project types [2], [3]. This is, however, not an optimal

way of defining processes and maximizing business and

productivity results. It creates a challenge of how to manage a broad

portfolio of processes, how to choose among them and how to mine

and reuse knowledge and experience from them. It also creates a

challenge to track the generic processes, identify their variants, and

thereby, extract knowledge and experience from them in order to

effectively reuse them in the future. All this hampers organizations

from improving their processes and makes them continuously

reinvent the wheel [9].

Forcing individuals to follow standardized and homogeneous

process models within organizations may sometimes have a negative

impact on their creativity and productivity. Many times, attempts to

make the processes compliant with process models get in the way

and slow down the production pace. They also strongly impact the

software engineers’ motivation for conducting their chores in some

specific contexts. [1]

It appears that there is no universal formula for choosing the right

processes for the right contexts and formality levels. Organizations,

their businesses and contexts are multi-dimensional, diverse and

very complex. Using homogenous process models for managing

them may not always be an optimal solution. For this reason, we feel

that the software community needs a formula for identifying process

needs and for recognizing waste which would aid them in adapting

their processes to specific contexts, business needs and formality

levels. The new formula should also allow the companies to assess

the organizational maturity from the perspective of how effective the

organizations are in adapting their processes to a particular context

and formality level.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.

Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.

181

Figure 2. Core process backbones.

In this paper, we claim that the organizational maturity is not only

about how organizations are capable to manage their processes, but

also how capable they are in adapting them to specific contexts and

business needs. The organizational maturity is dependent on how

organizations are capable of accumulating and reusing their process

knowledge in various process-related contexts in order to maximize

their business results and minimize process missteps. Hence, it

should also be strongly dependent on how they are capable to

orchestrate their processes and practices so that they match the

needs and contexts of current business objectives, needs, quality

requirements, and market trends.

In this paper, we also suggest context-driven process orchestration

method (CoDPOM) based on the concept of practice choreography

and process orchestration. The scope of CoDPOM applies to all

types of processes: primary lifecycle processes, supporting lifecycle

processes and various management processes [6].

The remainder of this paper is as follows. Section 2 presents

CoDPOM method. Section 3 raises questions that need to be

researched on. Finally, Section 4, rounds up this paper by claiming

that the CoDPOM method might be one of the silver bullet solutions

that the software community is striving for today.

2. CoDPOM
It is essential to choose the right set of activities for the right

process, its context and formality requirements. Hence, when

creating process instances to be executed in a specific context,

CoDPOM considers six elements. These are Process Backbone,

Practices, Process Orchestration, Repositories and Modeling Tools,

Strategies and Policies, and Formality Levels (see Figure 1).

2.1 Process Backbone
Process backbone provides a process template for all the processes.

It is the most sustaining process part constituting a common

denominator for all the processes. It provides a foundation for

choreographing the practices.

As illustrated in Figure 2, we suggest one generic process backbone

and two specialized ones, sequential and iterative. The reason to

why we have chosen those two styles is the fact that they are the

most commonly used styles in the industry today. They also

constitute a platform for defining other more specialized process

styles, if need arises.

Processes do not need to exclusively follow a specific sequential or

iterative process style. The styles may be mixed in many contexts.

An example is provided in Figure 3 where the Sequential Process

Backbone constitutes a template for defining a business cycle

process instance, whereas the Iterative Process Backbone constitutes

a platform for a highly iterative implementation process instance.

The belonging to a specialized. process backbone process is not

exclusive. The iterative backbone process may be part of the

sequential process and vice versa

2.2 Practice
The next core element in creating process instances is practice. We

define practice as a way of working that has been developed through

knowledge and experience gained when developing and maintaining

software systems. Practices are core elements in creating processes.

As illustrated on the left hand side of Figure 4, each practice is

described with eleven properties. However, the contents of

Properties 3-11 are driven by the first two properties which are

Context and Formality Level. It is their values that determine the

following:

• Process using the practice.

• Activities belonging to the practice at hand.

• Information required for managing the practice.

• Measurement covering the measurement goals relevant for the

practice and its formality level.

• Documentation needs relevant for the formality level required.

• Experience reporting on knowledge, feedback or skills gained

while being involved in or exposed to the practice.

• Expertise and roles required for performing the practice.

• Policies and strategies for creating the practice.

• Guidelines for how to choreograph the practice with other

practices.

Figure 3. A simplified illustration of mixing process styles [7].

182

Figure 4. Practice and Process Orchestration Structures.

2.3 Process Orchestration
The process backbone is the central part of a process. It corresponds

to a practice container. It is method neutral. A specific process

instance is realized by choreographing existing software practices

relevant for the context at hand [5]. A specific process instance is

created on an as-needed and context-driven basis. Depending on the

context at hand, the orchestration may result in heavyweight,

middleweight or lightweight process instances or a mixture of those.

The organizations should feel free to decide when to bind their

practices when orchestrating their processes. Both early and late

bindings should be allowed. In the contexts dealing with many

uncertainties and unknowns, we recommend as late binding as

possible. In other contexts, practices may be early bound to specific

process instances. However, in cases of unexpected situations, they

should be easily unbound and rebound. The reasons may be

emergent changes to be made to the systems or processes, changed

contexts, changes prerequisites, changed needs, changed

understanding, and the like.

To orchestrate processes is not easy bearing in mind the fact that

processes may comprise a great number of practices, they may need

to follow specific organizational strategies and policies, they may

have to consider the context and changes within it and they may

have to adhere to specific formality levels. In order to obtain

processes that are suitable for specific contexts and needs, the

organizations should compose processes by extracting and

assembling practices. To maximize process results and to minimize

process missteps, waste and failures, organizations need information

supporting them in their process orchestration work. Such

information is briefly presented on the right hand side of Figure 4. It

includes thirteen different properties whose contents are driven by

the first two properties which are Context and Formality Level. It is

their values that determine the following:

• List and amount of practices chosen for a specific process.

• Order among the practices chosen for the orchestrated process
at hand.

• Rules and recommendations to be followed when orchestrating
and performing the process.

• Suggestions for the overall process measurement.

• Documentation needs relevant for the formality level required.

• Experience reporting on knowledge, feedback or skills gained
while being involved in or exposed to the orchestrated process
variant.

• Expertise and roles required for orchestrating and performing
the orchestrated process.

• Meta models describing processes and their variants.

• Policies and strategies for creating the process.

• Orchestration instructions providing guidelines for how to
combine practices.

• Scalability guidelines describing how the process can be
shrank or expanded to fit the context at hand.

The roles involved in orchestrating and performing processes vary

with the context as well. This is because the scope of CoDPOM

method covers all the lifecycle processes, including primary

lifecycle processes, supporting lifecycle processes and

organizational lifecycle processes [6]. Hence, the choice of roles

involved does not only depend on the context and the mandate of

the roles involved but also on the processes to be orchestrated, their

formality requirements and the formality requirements for their

inherent practices.

2.4 Supporting Process Orchestration
Software organizations need to be supported with various

organizational policies, strategies, repositories and modeling tools.

Defining policies and strategies and considering them in process

orchestration is crucial for succeeding when choosing the right

process instance. Organizations must have policies defining

shrewdness and prudence for a specific course of business action

and strategies comprising carefully devised plans for acting towards

achieving specific business goals.

Information on policies and strategies is very important for choosing

the right practices and for orchestrating the appropriate processes.

Especially important is it to stress that policies and strategies

continuously change and adapt to the changing business

environment. For this reason, CoDPOM covers the capability to

create, change and enact new and/or existing policies and strategies.

Orchestrating processes is not trivial. First, it requires modeling

tools for shaping the processes. Second, it requires relevant

information and repositories recording process information. Third, it

requires that the repositories be integrated with CASE tools so that

they can (1) easily provide feedback while orchestrating and

executing processes and (2) record current process information to

provide experience and lessons learned for the purpose of future

process orchestrations.

2.5 Process Formality and Maturity
The business objectives and contexts at hand do not always require

high process formality. In some contexts, the organizations may be

content with lower formality levels. For this reason, they need a

context-driven adaptation method aiding them in determining

process needs and in recognizing process waste.

To achieve context-driven process adaptation, we suggest that all the

practices be defined on several formality levels and the processes be

orchestrated according to the formality needs required. It is only

then the organizations achieve process flexibility by choosing the

appropriate process formality for their process instances.

Our concept of practice choreography and process orchestration

influences the concept of organizational maturity to produce

software. In our opinion, organizational maturity is not only

about how organizations are capable to manage their processes.

183

Organizational maturity is also about how organizations are

capable to conform their processes to the right contexts.

3. RESEARCH QUESTIO"S
Our concept of process orchestration and orchestrated maturity

influences the concept of process reuse, flexibility, leanness,

scalability, completeness and coherence. Now, the practices may be

reused in various contexts and on different formality levels. The

process is highly flexible because it is orchestrated for a specific

context. The process is highly scalable because the choice and

amount of its practices is adapted to the current business, formality

needs. The process is lean because it only uses the practices that are

right for the context at hand [11]. When orchestrating processes,

CoDPOM automatically excludes all waste. However, one should

keep in mind that what is waste in one context may be an important

prerequisite process element in another context. Our method is

complete because it makes certain that the process only covers the

practices that are required for the context at hand. And, finally, it is

coherent because it creates logically consistent processes that match

the current context.

Our method solves the documentation and measurement dilemma.

By matching the documentation and measurement needs to a

specific process formality requirements, it determines how much we

should document and measure. It leads to higher stakeholder

satisfaction as well. Individuals may feel confident that they perform

realistic processes including the right tasks required for the right

context. They may also be aware when to exploit their ingenuity and

creativity or when to accept that the process rigidity does not allow

enough space for any innovative or imaginative abilities [1].

Our method facilitates contract negotiations. The parties involved

may agree upon the formality levels required for developing and

maintaining software. This, in turn, may provide input to cost

estimations. Finally, our concept suggests a framework delineating

what is permitted and what is not permitted when orchestrating a

process for a certain context and maturity level.

With our suggestion for a CoDPOM method, we do not claim that

current process maturity models are useless or irrelevant. On the

contrary, we believe that CoDPOM may complement the maturity

models by providing guidelines for how organizations may tailor

their process [4], [8], [10]. Also as illustrated in Figure 5, maturity

models are an important ingredient in CoDPOM method.

Implementing CoDPOM method may not be easy. Right now, we

have many questions that need to be researched on. Some of them

are the following:

• When orchestrating processes, how do we find appropriate

accuracy and level of detail?

• How do we reuse practices in an effective way?

• How do we meaningfully apply practices in the best way for a

given context?

• How do we effectively scale up and down the process?

• How do we define waste and how do we value it in different

contexts?

• How and in what contexts should we encourage individual

ingenuity, creativity, and teamwork, and reuse of process

assets?

• Can practices on different formality levels be choreographed in

one and the same process instance?

Figure 5. Ingredients in CoDPOM.

• How do we define formality levels for the practices and the

processes?

• How should we assess formality of the process consisting of

practices on various formality levels?

• How do we evaluate organizational maturity based on the

organization’s capability to adapt its processes to a specific

context?

• Do we need specialized process backbones?

• How do we orchestrate a process so that it fits specific

formality needs?

• How do we support process orchestration with process

modeling techniques and tools?

• Who owns the process and who owns the practice?

• How should we capture experience and lessons learned of a

specific practice and orchestrated process?

• How do we know that the orchestrated process is the right one?

• How do we improve practices and processes?

• How do we monitor and control the process?

• How do we embrace uncertainty?

• And many other questions to come.

4. EPILOGUE
For years, the software community has tried to tackle the problem of

rigid and inflexible processes, and for years, the software

community has tried to find ways for making them more relaxed and

flexible. We regard our CoDPOM method as a silver bullet solution

to this problem. It aids the software organizations in supporting their

needs for adapting their processes to the specific contexts, needs,

and formality levels. In our opinion, it is the understanding of the

context and the adaptation capability that is a token of

organizational maturity. We strongly believe in our method and we

strongly recommend that the software community continue

elaborating on it. It is only in this way, we may see whether it is one

of the potential silver bullets to be soon fired.

5. ACK"OWLEDGEME"TS
We would like to thank Mr. Paul McMahon, Mrs. Winifred

Menezes and Mr. Luigi Buglione for their valuable comments on

the definition of maturity.

184

6. REFERE"CES
[1] Baker, S.W., Formalizing Agility, Part 2: How an Agile

Organization Embraced the CMMI, In Proceedings of

AGILE Conference, 2006, IEEE Computer Society, 147-154.

[2] Beck, M., Managing Process Diversity while Improving
Your Practices, IEEE Software, Vol. 18, Issue 3, IEEE

Computer Society, 21-27.

[3] Bollinger, T., McGowan, C., A Critical Look at Software
Capability Evaluations: An Update, IEEE Software, 26, 5,

(Sept.-Oct. 2009), 80-83, DOI=10.1109/MS.2009.119.

[4] Carnegie Melon and SEI, Capability Maturity Model
Integration (CMMI), http://www.sei.cmu.edu/

/tools/index.cfm, retrieved on June 6, 2010.

[5] Cockburn, A., Methodology Per Project,
http://alistair.cockburn.us/Methodology+per+project,

retrieved on June 8, 2010.

[6] ISO/IEC 12207: 2008, Systems and Software Engineering -
Software life cycle processes, 2008.

[7] Kajko-Mattsson M., Sjökvist K., Söderström J., DRiMaP - A
Model of Distributed Risk Management Process, in

Proceedings of Fifth International Joint Conference on INC,

IMS and IDC, ISBN: 978-1-4244-5209-5, IEEE, 2009.

[8] McMahon, P., Integrating CMMI® and Agile Development,

Addison-Wesley, ISBN: 978-0-321-71410-7, 2010.

[9] Nyfjord, J., Kajko-Mattsson, M., Wengelin, D., Exemplary
System Development Framework Needed! Position Paper,

http://www.semat.org/pub/Main/WorkshopPositions/SEMA

T_position_SAAB.pdf, retrieved on June 6, 2010.

[10] Paulk, M.C., Weber, C.V., Curtis, B., Chrissis, M.B.
Capability Maturity Model SM for Software, Version 1.1.

Technical Report (Carnegie Mellon University / Software

Engineering Institute). CMU/SEI-93-TR-024 ESC-TR-93-

177, 1993, http://www.chc-3.com/class/tr24.93.pdf,

retrieved on August 15, 2010.

[11] Poppendieck, M., Poppendieck, T., Implementing Lean

Software Development: From Concept to Cash, Addison-

Wesley Professional, ISBN:0321437381, 2006.

185

