VWV PSC

PITTSBURGH SUPERCOMPUTING CENTER

T ——
Web10G: Stack Metrics for the Rest of Us

JET Meeting
October 21st, 2014
Chris Rapier
rapier@psc.edu

© 2010 Pittsburgh Supercomputing Center

Why Stack Metrics Matter

 All performance problems look the same

— Which complicates diagnosis considerably
« This imparts a significant impediment to workflow

— However, the TCP stack ‘knows’ quite a lot
* It has to in order to respond to events properly

— Getting what the stack knows to the user can

help identify the cause of poor performance

« Sadly, the stack isn’t instrumented. All we really have
IS a ‘check engine’ light.

—
© 2010 Pittsburgh Supercomputing Center

Why Stack Metrics Matter 2

* Poor performance increases costs and
decreases productivity

— Resolution of performance problems takes time

« Often because each problem has to be addressed from
a position of no information

» The interactive cycle with the user can take days if not
weeks to resolve the problem

« Stack metrics can give engineers real time
real world insight.

— This can reduce user downtime and support staff
effort

—
© 2010 Pittsburgh Supercomputing Center

How To Get The Metrics

Instrument the stack

Bring the metrics out of the kernel
* Provide an API

Build tools

Simple!

—
© 2010 Pittsburgh Supercomputing Center

Web10G: Making it Happen

 |nstrumentation

— RFC 4898 provides the basis of the KIS

o 127+ different metrics based on known and inferred events in
the TCP stack.

* Duplicate acks, spurious retransmissions, timeouts,
congestion window, sack blocks, congestion events, etc.

— Currently supports Reno, BIC, CUBIC, & HTCP.

— Each connection is maintained in a persistent yet stateless
struct in kernel memory

« Each instrument contains the *current* value and nothing
more. No lifespan data in the kernel.

— Relatively lightweight
» Can support millions of connections

—
© 2010 Pittsburgh Supercomputing Center

Web10G: Getting to the Data

 Need to move the data out of the kernel

— Normally kernel memory is siloed from userland
« However, there are methods to access some data

— Proc is slow. Netlink (nl) is much faster and very
well supported in the Linux kernel

 Web10g binary interface developed as
DLKM.

— Provides wrappers and entry points into KIS
memory structs via a generic netlink (nl) family

 Other access methods can be built around
nl using the Web10G nl family.

—
© 2010 Pittsburgh Supercomputing Center

Web10g: Using the Data

« User side API developed to interact with netlink and
process results

— Relatively simple with a small number of calls.
« Example code

Estats nl client init (&client 1list);
Estats val data new(&tcp data);
Estats read vars(tcp data, cid, client list);
{..do stuff with tcp data..}
Estats val data free(&tcp data);
Estats nl client destroy(&client list);

— Can be incorporated into almost any existing application or
build new tools easily

— User only has access to their own connections

—
© 2010 Pittsburgh Supercomputing Center

Web10g in Pictures

’Application
(AP (Userland)
, | |
ABI (Kernel Module) / ~
) 7]
([Linux Kernel / /
(TCP Stack / ‘ > .
RFC
4894 KIS
A/
7
b Y

| 4
© 2010 Pittsburgh Supercomputing Center \H\ P : ; C

Why Bother?

 More information
 Better tools
« Deeper insight into usage

4
© 2010 Pittsburgh Supercomputing Center

The Insight Tool

« Three different types of network users

— Those who know, those who expect too much,
those who expect too little

— Underutilization is a *real* problem

 How do we help those who don’t expect
enough?
— Give them a tool to visualize their flows

— Point out poorly performing flows
* Which is a *hard* problem

— Let them easily report problems to the NOC
— Teach them what to expect

—
© 2010 Pittsburgh Supercomputing Center

The Insight Ul

Filter Options
@Exclude Ports: [so ' |
MlInclude Ports: |]
ClInclude IPs: | |

Contact Information
First Name: chris |

Last Name: Rapier |
Email:|rapier@psc.edu
Institution:/psc
Phone: 412-512-5922 |

Connection Details

cid:335
SrclP: 128.182.160.131
SrcPort: 41239

DestIP: 5.145.32.23
DestPort: 44589
Application: ktorrent
time: 1409853638.742385
lat: 46.3178

long: 7.9881
DataOctetsOut: 586625
DataOctetsIn: 42975135
CurMSS: 1448

PipeSize: 0

MaxPipeSize: 2896
SmoothedRTT: 204
CurCwnd: 14480

© 2010 Pittsburgh Supercomputing Center ‘H\' P S ‘

PITTSBURGH SUPERCOMPUTING CENTER

The Insight client

« Simple websocket server that monitors flows

« Accepts commands in JSON format

— Stacked filters allow for fine tuning of the returned data
 Filter on destination IP/mask, ports, and applications
» Metric mask to limit results to specific data points

* Reports returned in JSON format

* Not tied to a specific UI.
— Can be used as a base for other monitoring projects

« Can return reports directly to a RDBMS

—
© 2010 Pittsburgh Supercomputing Center

The Insight NOC Tool

« Give NOCs an easy entry point into reported
flow data

 Still barebones at the moment
— Currently can find a view data in a table format
— Hoping to add:
* Reporting
« Advanced search

« Some level of data visualization
— Particularly to show change over life of flow

—
© 2010 Pittsburgh Supercomputing Center

Insight in Action

* Your patience please while we load the
demo

—
© 2010 Pittsburgh Supercomputing Center

http://localhost/map.html

Next Steps for Insight

* Insight tool is still too limited for most users
— Dependencies create large barriers to entry
— Cannot monitor 3" party transfers
— Still requires users to *watch* the flow

« Solution: Install in DMZs to monitor
scheduled transfers
— Provide a Ul to the NOC with better alarming
« This would include reporting and analysis to find trends

— Give users access to real time visualization or
post transfer reports in plain language
 Authorization is going to be hard but doable.

—
© 2010 Pittsburgh Supercomputing Center

Status of Web10g

« Core code is stable and deployable

« Working with teams at Google to prepare for
submission to Linux kernel

« Tool development is on going

* http://www.web10g.org
* http://github.com/rapierl/web10g
* raplier@psc.edu

—
2010 Pittsburgh Supercomputing Center

http://www.web10g.org

