
Embracing Ambiguity

Kenneth C. Arnold
MIT Media Lab, Mind Machine Project

Cambridge, MA USA
kcarnold@media.mit.edu

Henry Lieberman
MIT Media Lab, Mind Machine Project

Cambridge, MA USA
lieber@media.mit.edu

ABSTRACT
Software helps people fulfill their goals, but development
tools lack understanding of those goals. But if development
tools did understand how software artifacts relate to higher-
level intents and goals, they could help developers reuse code,
solve problems, and develop systems that are more robust
and easier to use. In this paper, we suggest that supporting
software development at a stage before concrete formalization
is an area of opportunity for software engineering research.
We discuss three aspects that are both core challenges and
opportunities for this research area: handling ambiguity, un-
derstanding human situations, and flexible reflection about
failure, and identify research results suggesting that substan-
tial progress can be made on these problems within a decade.
We believe that this research will make it easier to develop
software that is more broadly useful and robust, even in the
face of everyday uncertainty and failure.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; H.5.2 [Information Interfaces and Presenta-
tion]: User Interfaces—Natural language

General Terms
Design, Human Factors

1. INTRODUCTION
Humans often communicate their intentions incompletely

and ambiguously. When the problem is open-ended and the
situation is incompletely understood, imprecise communica-
tion helps us work together by attacking a problem from
different directions. Since we leave open many ways of accom-
plishing our goals, others with different mental or physical
affordances can help us. Sometimes a single utterance (even
a single word: “help!”) is sufficient; other times a dialogue
is necessary to clarify the intent. And when our helper’s

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

informal formal

abstract casual description UML specification

concrete API documentation,
comments

code, tests

Table 1: Examples of program representations at dif-
ferent degrees of formality and levels of abstraction

actions prove unsuccessful, he/she can often recognize that
and try a different approach.

We find the opposite situation when we interact with
computers. They require us to communicate with an almost
mathematical precision, mostly about structured instructions,
and infrequently about intentions. When the instructions are
unclear, the computer usually either gives an error message
or blindly follows one possible interpretation. And when
some action is unsuccessful, often the only course of action
is a preprogrammed generic fallback routine.

Yet the huge differences in capabilities between humans
and computers suggests that higher-level communication
would be even more helpful in communicating with comput-
ers than with other humans. And there are glimmers of hope:
web search engines do effectively find concrete results from
incomplete queries, for example. But much like compilers
are often written in the language they are to compile, sub-
stantially more humane environments for crafting software
will enable more humane interfaces for users.

1.1 Formality vs. Abstraction Level
Our thesis is that future programming environments should

work with rich mappings between different kinds of program
representations–not just abstract to concrete representations
but also informal to formal representations. A “formal” rep-
resentation has a unique and precise semantic interpretation.
Table 1 clarifies the distinction between level of abstraction
and formality. By “casual descriptions” we specifically refer
to high-level natural language descriptions as in Figure 1.
However, loose formalisms and other representations fill in
intermediary points between the extremes of the table. Any
of these representations could also happen to be incomplete
in a particular case; the distinction between abstract and
concrete concerns the level of detail of the representation,
not how finished it is.

Since connections between abstract and concrete repre-
sentations have been well studied, this paper will focus on
informality. Understanding informal representations and

1

The main view is a list of conversations. Clicking
on a conversation opens it and presents options to
reply or forward. . . . When composing a message,
the user provides a list of recipients, a subject, and
the message body; upon clicking Send, the message is
sent to the recipients, after a delay of several seconds
during which sending can be undone. . . .

Figure 1: An informal, abstract representation of an
email management environment

relating them to possible formal representations presents a
variety of new challenges and opportunities.

1.2 Mapping Between Levels of Description
In this paper, we will start to explore some alternatives to

the current style of interaction with software development
tools. The central concept is building rich mappings between
representations at different levels of formality and abstraction.
These mappings are like those of a developer who has been
working on a project for some time: they represent how
different parts and characteristics of the code relate to the
system’s observable functionality, high-level structure, and
external constraints. These mappings help the developer
pinpoint code locations, or even structural decisions, that
may be responsible for a bug; they facilitate quickly adapting
the software to suit changing requirements; and if a future
project has components with similar requirements, they help
locate potentially reusable code.

Combined with flexible and robust reasoning capabilities,
these mappings will enable software development tools to
support the development process before the developer must
commit to concrete and formal representations. The impact
will be felt well beyond initial development, however; we will
highlight benefits in handling novel circumstances and in ro-
bustly responding to failure. Some of these ideas are already
prototyped or implemented, others are merely conceptual,
but all have wide-reaching impact on the development and
use of computer software.

2. CHALLENGES AND OPPORTUNITIES
Since computers must execute a precise sequence of in-

structions, any imprecision or ambiguity in specifying those
instructions risks failure or unexpected behavior. Software
development processes have been understandably averse to
informal representations, going to great lengths to formalize
instruction interpretation and avoid possible ambiguity. So
any efforts to enable development tools to work with informal
representations will face many challenges. But with each
challenge comes great opportunity to improve the reusabil-
ity, flexibility, and reliability of software. We focus here on
three challenges and opportunities: handling ambiguity, un-
derstanding human situations, and flexible reflection about
failure.

2.1 Handling Ambiguity
The process of authoring a program can be described as go-

ing from ambiguous high-level representations about purpose
and approach (mostly contained in the minds of the program-
mers) to unambiguous, highly structured representations of
instructions (mostly contained in computers). Likewise, the
process of reading or debugging code can be described as
building or verifying a mapping between the concrete code

artifacts and abstract intentions and requirements. Develop-
ment environments provide great assistance for the lowest
level of this process: intelligent completion and refactor-
ing greatly aid the input, verification, and manipulation of
the highly-structured code representation, and debuggers
can help programmers determine why the structured repre-
sentation behaves differently from their high-level purpose.
Also, modern programming languages have gradually freed
programmers from less relevant concerns and given them rep-
resentational tools to guide their middle-level thinking. But
most of the process of mapping between levels of description
has remained the sole responsibility of the programmer.

Since the end products of programming should be as un-
ambiguous as possible, many programming researchers have
been understandably averse to allowing ambiguity even in
high-level specifications. However, we suggest that this aver-
sion may be unhelpful because it tends to force programmers
to prematurely commit to some particular formal way of
thinking before they can dialogue with computers about
their programs. It also limits the development tools to only
the degree of flexibility afforded by the representation they
work with. Instead, we suggest that programming environ-
ments could permit programmers to describe desired behavior
in more natural terms, even if the terms themselves or the
relations between them are ambiguous, then assist the pro-
grammer in the task of mapping out how those descriptions
relate to unambiguous and concrete software artifacts.

2.1.1 Interactions
A development environment capable of working with rela-

tionships between program representations at different levels
of detail could help programmers in several ways. First, it
could help them find existing code that they could reuse in
their programs. The programmer might specify the goal of
the immediately desired code, or a subgoal may be inferred
from a higher-level goal and the code written so far. Similar
techniques could apply to other types of software artifacts
as well. For example, a goal could map to both to code and
to behavioral tests that (partially) evaluate whether code
accomplishes that purpose. And insomuch as failed test cases
or other bugs indicate a failure of the concrete code to satisfy
the ambiguous goal, we can also think of debugging this
way. For instance, we could collect and analyze examples of
solutions to problems in certain situations in order to learn
what problems might come up in other situations, what their
root causes were, and what problem-solving strategies or
code changes were helpful in fixing similar problems before.
Finally, the programming environment could help the pro-
grammer document and distribute the result in a way that
permits others to understand and utilize it.

An example of a one-step interaction is our purpose-directed
code reuse interface, called Zones [1], shown in Figure 2. Pro-
grammers can use a Zone to associate a fragment of code with
a natural language description of its purpose. By omitting
either the purpose or the code, this annotation interface be-
comes a search interface, which becomes an annotation when
the search is complete. The interaction is thus much like
code search, but the search queries can include abstract char-
acteristics that would not match a keyword in an identifier or
type, and the retrieved code need not be commented. Also
unlike a typical code search interaction, Zones learns how pro-
grammers describe purpose by capturing both successful and

2

(a) A Zone (black rectangle
with flag) associates a fragment
of Scratch code with a state-
ment of its purpose. The top-
left button invokes the search
sidebar.

(b) Given a purpose statement, the Zone side-
bar (left) shows code that might fulfill it.
Selecting an implementation from the list on
the left shows its code on the right. As a
simulation of future functionality, red boxes
surround values that vary among otherwise
similar code, highlighting what might need
to be changed.

(c) The Zone sidebar
can suggest possible
purpose statements for
a code fragment (sim-
ulated for this illustra-
tion).

Figure 2: Types of interactions with Zones

unsuccessful search interactions, and simultaneously learns
what code characteristics are relevant to that particular goal.

2.1.2 Promising Research

Code Search.
One promising research direction is around code search,

since search queries can be expressed in a variety of different
ways, some more or less ambiguous, and systems can find
code within a project or within a code repository that might
be relevant to the query. [10] includes a good survey of code
search techniques, including formal specifications, type sys-
tems, design patterns, keywords, ontologies, tagging, and test
cases. A state-of-the-art example of code search integrated
into the development process is Blueprint [2]. However, these
code search systems have limited ability to reason about
purposes that can be accomplished in a variety of ways, and
their understanding of natural language is limited at best.

Programming in Natural Language.
Natural language has often been seen as desirable as a

high-level specification or programming language because
it is a natural medium for communicating goals and ideas
with human collaborators. Various attempts have been made
to interpret natural language as computer instructions di-
rectly, from COBOL to SQL to several modern attempts,
including Pegasus [5]. However, since programs must ex-
ecute unambiguously, many previous attempts at natural
language programming have required the use of unnaturally
precise wording. Natural language representations of pro-
gram present many challenges, but we think that managing
ambiguity is a core challenge that has not yet received suffi-
cient attention. Several projects have informed our thinking
in this regard. Keyword Programming [8] matches keywords
to commands and types in a function library. It is a useful
tool for managing ambiguity on a low level: when a pro-
grammer knows what keywords should appear in a line of
code but not exactly how code is formed using these key-
words, the Keyword Programming system can use search and
type chaining techniques to disambiguate the keyword repre-
sentation of that line of code. However, the programmer’s
thinking must still be precise enough to use keywords at the
level of a single line of code. Metafor [9] and its successor
MOOIDE [7] use sentence structure and mixed-initiative
discourse to understand compound descriptions. MOOIDE

further showed that general background world knowledge
helps to understand natural language input.

2.1.3 Mapping General to Specific
To assist in disambiguation, a programming environment

must be able to relate ambiguous descriptions to unambigu-
ous representations. One approach is to try various possible
realizations of the ambiguous description; this approach has
been successful where the ambiguous description straightfor-
wardly defines a constrained space of possible unambiguous
representations. Today’s large software libraries and open-
source code repositories enable a different approach: learning
relationships between ambiguous and unambiguous from ex-
amples. If a repository contains both code fragments and
natural language descriptions of their purpose, the program-
ming environment can learn how characteristics of the code
relate to characteristics of their descriptions.

The backend of our Zones system, called ProcedureSpace,
is one example of a system that can flexibly map general
descriptions to specific implementations. The knowledge
about purpose descriptions is incomplete both because they
are ambiguous to begin with and because the system has
a very incomplete understanding of the natural language
itself: the system may not have sufficient knowledge about a
particular word used, or the words may be combined in an
unfamiliar way. And knowledge about the code is incomplete
in that it is generally not known what parts of the code
are relevant to accomplishing the goal and what parts are
merely implementation details. However, associations be-
tween code fragments and purpose descriptions disambiguate
each other: ProcedureSpace, in effect, learns about purpose
descriptions from the code they describe, and learns about
code by studying how people describe its purpose. Proce-
dureSpace additionally uses background knowledge about
how English words and phrases relate to each other to help
understand the natural language descriptions. The reason-
ing approach of ProcedureSpace is not formal logic but an
application of a new technique called Blending [4], enabling
the easy use of a variety of different kinds of knowledge, so
long as they can be made to overlap.

2.2 Understanding Human Contexts
The rapid proliferation of websites and smartphones has

brought software into direct contact with many parts of
our lives. Social constraints such as privacy and relevance

3

have had profound impacts on the design of even backend
systems (such as image storage). Yet that software, and the
tools that help design it, hardly understand the contexts and
constraints they are working with. The result is a mismatch
between software and the human contexts in which it works;
recent outcries over unforeseen implications of Facebook’s
complex privacy settings underscore the possible severity of
this mismatch.

A major challenge in dealing with this mismatch is that
human contexts are described in very different terms and
at very different levels of detail compared to the programs
that interact with them. A formal constraint, such as a
simple specific condition that must hold for a user’s pictures
to be visible, will soon be able to be checked automatically,
once verification tools become able to handle today’s highly
distributed datacenters. But understanding human contexts
at their description level will allow not just avoiding spe-
cific mistakes but also acting appropriately in a variety of
situations.

Resources of commonsense knowledge can help develop-
ment environments determine what are reasonable or ex-
pected actions or events. A knowledgebase represented in
formal logic, such as Cyc[6], could help reason about specific
situations in detail, while a knowledgebase in natural lan-
guage, such as ConceptNet[3], could help understand broad
issues of intent and context. The Zones/ProcedureSpace sys-
tem described earlier uses ConceptNet to understand natural
language descriptions of code intent.

2.3 Reflecting About Failure
If everything always went as the developers expected, writ-

ing explicit logic for all situations would be merely tedious.
But if something fails, a system that does not understand
what higher-level goals it is meant to achieve will not know
how to react appropriately. Developers can give explicit
instructions about what to do in certain cases, but enumerat-
ing all possible failure scenarios is difficult if not impossible
in a sufficiently complex system. So for a system to react
appropriately to unforeseen failure, it must know how each
of its functions relates to the goals that it is trying to pursue.

When one approach fails, one strategy is to try an alterna-
tive approach. Consider a development tool that is aware of
multiple ways of approaching a problem and presents them
to a developer in incompletely specified form. The devel-
oper will probably choose to only flesh out one approach in
detail to be used in the typical execution of the program.
But the developer may choose to also include selected other
approaches in the compiled program. In case of failure, the
program could switch to an alternative approach, perhaps in
communication with the user or a central problem-solving
knowledgebase, or perhaps autonomously. Knowledge of
the situation, combined with commonsense knowledge as
described in the previous section, could be used to make
informed guesses at reasonable choices for any details that
the developer left unspecified. This failure-management pro-
cess could happen entirely in the field, or a forward-looking
developer could engage “what-if” scenarios in the lab. While
fully autonomous problem-solving is an ideal, this approach
is helpful even if it merely suggests possible failure scenarios
and potentially reasonable courses of action to the developer
for review and further specification.

Some existing systems implement some parts of this vi-
sion. But existing approaches are often limited to doing

something slightly different with the same data and problem
representations. But if the system has a representation of
its goal at a sufficiently high level, it could switch to an
entirely different approach. For example, a common type of
failure in message-passing systems is an unreliable or slow
communications channel. So rather than failing, it could
order the messages by degree of relevance to the current
goals of the destination systems, understanding that message
priorities may change as goals change. Or it could even find
alternative agents more nearby that may be able to accom-
plish similar goals. This behavior could be hard-coded for
certain scenarios and representations, but to work in general,
the system must be able to reason about how capabilities
accessible to it are related to goals that are, at least from its
point of view, incompletely specified or understood.

3. CASE AND MODEL-BASED METHODS
The points and scenarios described thus far may remind

readers of CASE or Model-Based Software Engineering tools
and methodologies that have waxed and waned in popularity
for the past three decades. These systems attempt to address
the difficulty of software engineering by raising the level
of abstraction in software descriptions and the degree of
automation in “compiling” those descriptions into executable
code [11]. However, these systems are still formal, in that
their input languages must have precise semantics. Ideally it
would be easier for humans to manually disambiguate their
thoughts into that input language, then use that language
alone as a surrogate for the “real” program, but the results
in practice have been mixed. We suggest instead that once
software systems can deal with ambiguous presentations of
the goals they (or the systems they build) should have, the
overall process of crafting specifications, tests, and reliable
software can be substantially eased.

4. CONCLUSION
Reliable software will know its goals and have multiple

strategies to accomplish them in case something goes wrong.
Intelligent software development environments will be able to
participate in natural human discourse about the program at
all levels of detail. Software will understand human contexts
and goals and behave appropriately in them. All of these
characteristics will be enabled once software engineering tools
and practices embrace the reality of ambiguity, acknowledge
its strengths, and help programming teams flesh out a com-
plete description of the software that includes both formal
and informal descriptions.

5. REFERENCES
[1] K. C. Arnold and H. Lieberman. Managing ambiguity

in programming by finding unambiguous examples. In
Onward! 2010 (to appear), 2010.

[2] J. Brandt, M. Dontcheva, M. Weskamp, and S. R.
Klemmer. Example-centric programming: Integrating
web search into the development environment.
Technical report, CSTR-2009-01, 2009.

[3] C. Havasi, R. Speer, and J. Alonso. ConceptNet 3: a
flexible, multilingual semantic network for common
sense knowledge. In Recent Advances in Natural
Language Processing, Borovets, Bulgaria, September
2007.

4

[4] C. Havasi, R. Speer, J. Pustejovsky, and H. Lieberman.
Digital Intuition: Applying common sense using
dimensionality reduction. IEEE Intelligent Systems,
July 2009.

[5] R. Knöll and M. Mezini. Pegasus: first steps toward a
naturalistic programming language. In OOPSLA ’06:
Companion to the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and
applications, pages 542–559, New York, NY, USA, 2006.
ACM.

[6] D. Lenat. CYC: A large-scale investment in knowledge
infrastructure. Communications of the ACM, 11:33–38,
1995.

[7] H. Lieberman and M. Ahmad. Knowing what you’re
talking about: Natural language programming of a
multi-player online game. In M. Dontcheva, T. Lau,
A. Cypher, and J. Nichols, editors, No Code Required:
Giving Users Tools to Transform the Web. Morgan
Kaufmann, 2010.

[8] G. Little and R. C. Miller. Keyword programming in
Java. In ASE ’07: Proceedings of the twenty-second
IEEE/ACM international conference on Automated
software engineering, pages 84–93, New York, NY,
USA, 2007. ACM.

[9] H. Liu and H. Lieberman. Programmatic semantics for
natural language interfaces. In CHI ’05: CHI ’05
extended abstracts on Human factors in computing
systems, pages 1597–1600, New York, NY, USA, 2005.
ACM.

[10] S. P. Reiss. Semantics-based code search. In ICSE ’09:
Proceedings of the 2009 IEEE 31st International
Conference on Software Engineering, pages 243–253,
Washington, DC, USA, 2009. IEEE Computer Society.

[11] B. Selic. Personal reflections on automation,
programming culture, and model-based software
engineering. Automated Software Engineering, 15(3-4),
2008.

5

