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Some Simple Observations
• Consider Science Research Benchmarks in MLPerf

• Enhance collaboration between Industry and Research; HPC and MLPerf MLSys communities

• Support common environments from Edge to Cloud and HPC systems

• Huge switch to Deep Learning for Big Data

• Many new algorithms to be developed

• Deep Learning for (Geospatial) Time Series (staple of the edge) incredibly promising: obvious 

relevance to Covid-19 studies

• Examples

• Inference at the edge

• Fusion instabilities

• Ride-hailing

• Racing Cars

• Images

• Earthquakes

• Solving ODE’s

• Particle Physics Events

• Timely versus real-time (throughput versus latency); both important
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MLPerf Consortium Deep Learning Benchmarks

Some Relevant Working Groups

• Training

• Inference (Batch and Streaming)

• TinyML (embedded)

• Deep Learning for Time Series

• Power

• Datasets

• HPC (DoE Labs)

• Research

• Science Data 

(Proposed by Fox, Hey)

MLPerf's mission is to build fair and 

useful benchmarks for measuring 

training and inference performance of 

ML hardware, software, and services.

Benchmark what user sees 

3

● Accelerate progress in ML via fair and 

useful measurement

● Serve both the commercial and research 

communities

● Enable fair comparison of competing 

systems yet encourage innovation to 

improve the state-of-the-art of ML

● Enforce replicability to ensure reliable 

results

● Keep benchmarking effort affordable so 

all can participate
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Training v0.6

Typical 

Benchmarks

2048 TPUs or

1536 V100’s with 

Infiniband quite 

powerful

IM r,~, 11 IJ l'J 1-."1(tl 11i11111:..L...., 

I I I I I 
Benchmark results (minutes) 

Object 

~t Image detection, Object Reinforce-
classifi• light• detection, Translation Translation Recom- ment 
cation weight heavy-wt. , recurrent , non-recur. mendation Learning 

MLPerf 
Movie Lens-

I Submitter I System I Processor I# I Accelerator # 
lmageNet coco coco WMT E-G WMT E-G 20M Go 

ResNet-50 SSDw/ Mask-
# Software V1.5 ResNet-34 R-CNN NMT Transformer NCF Mini Go 
r •,•~I ~tH•-- ■■ •N 1 l l lrll I 
0.6-1 Google TPUv3.32 TPUv3 16 TensorFlow, TPU 1.14 .1.dev 42.19 12.61 107.03 12.25 10.20 (1 I 
0.6-2 Google TPUv3.128 TPUv3 64 TensorFlow, TPU 1.14 .1.dev 11.22 3.89 57.46 4.62 3.85 (1 I 
0.6-3 Google TPUv3.256 TPUv3 128 Tensor Flow, TPU 1.14 .1 .dev 6.86 2.76 35.60 3.53 2.81 (1 I 
0.6-4 Google TPUv3.512 TPUv3 256 TensorFlow, TPU 1.14.1.dev 3.85 1.79 2.51 1.58 (1 I 
0.6-5 Google TPUv3.1024 TPUv3 512 TensorFlow, TPU 1.14.1.dev 2.27 1.34 2. 11 1.05 [1 I 
0.6-6 Google TPUv3.2048 TPUv3 1024 TensorFlow, TPU 1.14 .1.dev 1.28 1.21 0.85 (1 I 

r •.\•~fl,f.ltlf•..J11nr tU• ■ O,,.""{; I 
0.6-7 Intel 32x 2S CLX 8260L CLX 8260L 64 Tensor Flow [1 I 14.43 

0.6-8 NVIDIA DGX-1 Tesla V100 8 MXNet, NGC19.05 11 5.22 (1 I 
0.6-9 NVIDIA DGX-1 Tesla V100 8 PyTorch, NGC19.05 22 .36 207.48 20.55 20.34 [1 I 
0.6-10 NVIDIA DGX-1 Tesla v100 8 TensorFlow, NGC19.05 (1 I 27.39 

0.6-11 NVIDIA 3x DGX-1 Tesla V100 24 TensorFlow, NGC19.05 [1 I 13.57 

0.6-12 NVIDIA 24x DGX-1 Tesla v 100 192 PyTorch, NGC19.05 22.03 (1 I 
0.6-13 NVIDIA 30x DGX-1 Tesla v100 240 PyTorch, NGC19.05 2.67 [1 I 
0.6-14 NVIDIA 48x DGX-1 Tesla V100 384 PyTorch, NGC19.05 1.99 (1 I 
0.6-15 NVIDIA 60x DGX-1 Tesla V100 480 PyTorch, NGC19.05 2.05 [1 I 
0.6-16 NVIDIA 130x DGX-1 Tesla V100 1040 MXNet, NGC19.05 1.69 (1 I 
0.6-17 NVIDIA DGX-2 Tesla v100 16 MXNet, NGC19.05 57.87 [1 I 
0.6-18 NVIDIA DGX-2 Tesla v100 16 PyTorch, NGC19.05 12.21 101 .00 10.94 11.04 (1 I 
0.6-19 NVIDIA DGX-2H Tesla v100 16 MXNet, NGC19.05 52.74 (1 I 
0.6-20 NVIDIA DGX-2H Tesla v100 16 PyTorch, NGC19.05 11.41 95.20 9.87 9.80 (1 I 
0.6-21 NVIDIA 4x DGX-2H Tesla V100 64 PyTorch, NGC19.05 4.78 32.72 (1 I 
0.6-22 NVIDIA 10x DGX-2H Tesla V100 160 PyTorch, NGC19.05 2.41 (1 I 
0.6-23 NVIDIA 12x DGX-2H Tesla V100 192 PyTorch, NGC19.05 18.47 [1 I 
0.6-24 NVIDIA 15x DGX-2H Tesla v100 240 PyTorch, NGC19.05 2.56 (1 I 
0.6-25 NVIDIA 16x DGX-2H Tesla v100 256 PyTorch, NGC19.05 2.12 [1 I 
0.6-26 NVIDIA 24x DGX-2H Tesla V100 384 PyTorch, NGC19.05 1.80 (1 I 
0.6-27 NVIDIA 30x DGX-2H, 8 chips eact Tesla V100 240 PyTorch, NGC19.05 2.23 (1 I 
0.6-28 NVIDIA 30x DGX-2H Tesla V100 480 PyTorch, NGC19.05 1.59 (1 I 
0.6-29 NVIDIA 32x DGX-2H Tesla V100 512 MXNet, NGC19.05 2.59 [1 I 
0.6-30 NVIDIA 96x DGX-2H Tesla v100 1536 MXNet, NGC19.05 1.33 (1 I 
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Inference v0.5

Dividiti is MLPerf member 

in Cambridge UK

Benchmarks and rules

~t 
MLPerf 

dV 
dt 

Area Task Model Dataset Quality Server latency constraint Multi-Stream latency constraint 

Vision Image classification Resnet50-v1.5 lmageNet (224x224) 99% of FP32 (76.46%) 15 ms 50ms 

Vision Image classificat ion MobileNets-vl 224 lmageNet (224x224) 98% of FP32 (71.68%) 10ms 50ms 

Vision Object detection SS D-ResNet34 coco (1200x1200) 99% of FP32 (0.20 mAP) 100 ms 66ms 

Vision Object detection SSD-MobileNets-vl coco (300x300) 99% of FP32 (0.22 mAP) 10ms 50ms 

Language Machine translation GNMT WMT16 99% of FP32 (23.9 BLEU) 250 ms 100 ms 

Benchmark results (Single Stream in mill iseconds, MultiStream In no. streams, Server in QPS1 Offl ine In Inputs/second) 

Image classification Objecl detection 

lmageNel lmageNel coco 

MobileNet-v1 ResNel-50 v1 .5 SSD w/ MobileNel-v1 

ID Submitter Strum Multi$ S•rv1r Offl ln1 Strum Multi$ S1rv1 r Offlln1 Strum Multi$ system -------------------..... -------------+------------------,t,----..,..-----------
lnf-0.5-1 Alibaba Cloud Alibaba Cloud T4 17,473.60 5,540.10 

lnf-0,5-2 Dell EMC Dell EMC R740 67,124.18 71 ,214.50 20,742.83 22,438.00 
Dell EMC R740xd wllh 2nd generation Intel® Xeon® 

lnf-0.5-3 Dell EMC Scalable Processor 1.54 

Dell EMC R740xd wilh 2nd generation Intel® Xeon® 
lnf-0.5-4 Dell EMC Scalable Processor 1.69 

lnf-0.5-5 dlvldlU Raspberry Pl 4 (rpl4) 394,34 1,916.65 

lnf-0.5-6 dividiU Raspberry Pi 4 (rpi4) 103.60 448.31 

lnf-0.5-7 dividill Llnaro HIKey960 (hlkey960) 121.11 518.07 

lnf-0.5-8 dividlU Linaro HIKey960 (hlkey960) 50.77 203.99 

lnf-0.5-9 dividill Linaro HiKey960 (hikey960) 143.07 494.90 

lnf-0.5-10 dlvldltl Huawel Mate 1 O Pro (mate10pro) 74.20 354.13 

lnf-0.5-11 dividiU Huawel Mate 1 o Pro (mate10pro) 111.60 494.92 

lnf-0.5-12 dividlll Firefly-RK3399 (firefly) 120.56 695.11 

lnf-0.5-13 dlvldlU Flrefly-RK3399 (firefly) 106.49 447.90 

lnf-0.5-14 dividili Firefly-RK3399 (firefly) 80.12 391.02 

lnf-0.5-15 Google Cloud TPU v3 16,014.29 32,716.00 

lnf-0.5-16 Google 2x Cloud TPU v3 65,431.40 

lnf-0.5-17 Google 4X Cloud TPU v3 130,833.00 

lnf-0.5-18 Google 8x Cloud TPU v3 261 ,587.00 

lnf-0.5-19 Google 16x Cloud TPU v3 524 ,978.00 

lnf-0.5-20 Google 32x Cloud TPU v3 1,038,510.00 

lnf-0.5-21 Habana Labs HL-102-Goya PCl-bOard 0.24 700.00 14,451.00 

lnf-0.5-22 lnlel Intel® Xeon® Platinum 9200 processors 1.40 

lnf-0.5-23 lnlel Intel® Xeon® Platinum 9200 processors 0.49 27,244.81 29,203.30 1.37 4,850.62 5,965.62 

lnf-0.5-24 lnlel DELL ICL i3 1005G1 3.55 507.71 13.58 100.93 6.67 

lnf-0.5-25 NVIDIA Supermlc,o 4029GP-TRT-OT0-28 8xT4 (T4x8) 6,320.00 135,073.00 141 ,807.00 1,920.00 41 ,546.64 44,977.80 2,624.00 

lnf-0,5-26 NVIDIA Supennicro 6049GP-TRT-OT0-29 20xT4 (T4x20) 103,532.10 113,592.00 

lnf-0.5-27 NVIDIA SCAN 3XS DBP T496X2 Fluid (TilanRTXx4) 8,704.00 199,098.30 222,388.00 2,560.00 60,030.57 66,250.40 3,640.00 

lnf-0.5-28 NVIDIA NVIDIA Jetson AGX Xavier (Xavier) 0.58 302.00 6,520.75 2.04 100.00 2,158.93 1.50 102.00 

lnf-0.5-29 Qualcomm SDM855QRO 3.02 8.95 
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Science Data and MLPerf I
● Suggest that MLPerf should address Science Research Data
● There is no existing scientific data benchmarking activity with a similar flavor to 

MLPerf -- namely addressing important realistic problems aiming at modern data 
analytics including deep learning on modern high-performance analysis systems.

● Further, the challenges of science data benchmarking both benefit from the 
approach of MLPerf and will be synergistic with existing working groups. 

● Science like industry involves edge and data-center issues, inference, and 
training, There are some similarities in the datasets and analytics as both industry 
and science involve image data but also differences; 

○ Science data associated with simulations and particle physics experiments are quite different 
from most industry exemplars.

● Science datasets are often large and growing in size, while the multitude of active 
areas gives diverse challenges. The best practice science algorithms are 
shifting to deep learning approaches as in industry today.

● Benchmarks will help more science fields take advantage of modern ML and 
increase link between Industry and Research

● Setting up first working group meeting: Tell me if you are interested

6
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Science Data and MLPerf II
● We foresee that scientific machine learning benchmarks for MLPerf will include a number of 

datasets, from each of the scientific domains, along with a representative problem from 

those domains. Some example benchmarks where we already have contacted scientists 

are:
○ Classifying cloud types from satellite imagery (environmental sciences)
○ Photometric redshift estimation based on observational data (astronomy), and
○ Removing noise from microscopic datasets (life and material sciences)
○ Real-time monitoring and archival analysis of data from light sources at DIAMOND (UK) and DoE 

Laboratories (US) (Biological and Material sciences)
○ Simulations covering near term recurrent neural networks and long term studies with fully connected 

and convolutional networks. This would initially be taken from biomolecular and material science 
areas but these examples will lead to work across many fields

○ Time series of geographically distributed disease occurrences with simulated and observed data
○ Monitoring of plasma instabilities in fusion Tokamaks with observation and simulation

● When fully contributed, the benchmark suite will cover the following domains: material 

sciences, environmental sciences, life sciences, fusion, particle physics, astronomy, 

earthquake and earth sciences, with more than one representative problem from each of 

these domains

7
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• On general principles, Big data stresses capabilities of compute/data platforms and needs best 

possible performance and naturally uses HPC

• HPC are not just Supercomputers and the use of HPC for deep learning is  pervasive in both 

industry and academia/government

• Cloud/Supercomputer/HPC Cluster: GPU and TPU

• Edge: FPGA Edge GPU, Edge TPU, Custom …

• Large number of new architectures focussed on AI, CPU also useful!

• As well as HPC for AI (GPU’s for deep learning), dramatic progress on AI for HPC enhancing 

simulations with 100’s of papers in last 3 years

• PyTorch and TensorFlow (maybe MXNET) dominate; should collaborate on enhancing these and 

building systems around them

• Hyper-parameter search needs to be deployed broadly; places like IU do not have resources to 

support extensive hyper-parameter search but more common in Industry and DoE

• Need to advance tools for time series: LSTM, GRU, ConvLSTM, CNN+LSTM, Reformer, 

Transformer

• Industry logistics, ride-hailing, speech, image streams but science can be different

• Need to advance deep learning for clustering, dimension reduction and other classic machine 

learning problems

Linkage of Deep Learning (AI) and High Performance Computing

8I 
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ML 

Code

NIPS 2015 http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf

This well-known paper points 

out that parallel high-

performance machine learning 

is perhaps most fun but just a 

part of system. We need to 

integrate in the other data and 

orchestration components.

This integration is not very 

good or easy partly because 

data management systems 

like Spark are JVM-based 

which doesn’t cleanly link to 

C++, Python world of high-

performance ML

My project Twister2 at IU 

addresses this problem

Not much addressed at MLSys

HPCforML: Integration Challenges

Hidden Technical Debt in Machine Learning Systems 

D. Sculley, Gary Holt Daniel Golovin, ugene Davydov Todd Phillip 
{dsculley , gholt , dgg , edavydov , toddphillips}@google . com 

G gl In . 
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Data 
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"Only a fraction of real-world ML systems 
is composed of ML code" 
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Classic Streaming Software Solution

10

Device Fog
Pub-Sub 

Buffer

Fog interface similar to Cloud

Required response latency and 

functionality decides where work done

Analysis Streams

Cloud/Data-center

Apache Storm model supported by Apache Beam (Google 

Cloud Dataflow)

Streaming software surrounded by well known Big Data 

Engineering Systems such as Spark, Flink, Hadoop, MongoDB 

and use Serverless (Function as a Service) architecture 

Java Python C++ integration not so easy with good performance

Spout 

Spout 

.._ __________________________ _ 
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Apache Beam, Kubeflow, Argo: Typical Industry Edge to Cloud Workflow

• Recent Industry solution aimed at AI workflows constructed as a graph of containers 

• March 11, 2020 https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-ai-platform-pipelines

11

Google Cloud AI Platform Pipelines on 

Kubernetes

General DAG connected containers

Full edge to cloud workflow
UHrModel [ Custom l [ Prabullt ) COffle!!!!!nla coml!!!nenta • 

Notebooks 
I TFX Pipeline Template I ( Custom Pipelines ) • 

TFXSDK I Pipelines and 
Lineage UI 

KFP SOK 

GKE 
r--------------------------------

Kubeflow Pipelines 

Argo Workflow Engine 

Pipeline steps 
,-----.. 

Metadata Store MLMD 

Dataflow Trainin BigQuery 

Edge 

Creation 
Flow 

Trigger 

0 Mobile 

- Data = Store 

l 

'9' Web 

; loT 

Configure source 
to push event 
message to 

Pub/ Sub Topic 

Ingest 

Pub/ Sub -

Create 
Pub/ Sub 

Topic and 
Subscription 

Enrich 

Apache 
Beam (SDK) 

,,c;, Dataflow 
X Streaming 

Analyze 

l 
Activate 

Deploy 
streaming or 

batch Dataflow 
job using 

templates, CU. 
or notebooks 

(il BigQuery 

T 

f~ Bigtable 

Analyze 

Backfill/ Reprocess 

f-----

~ Datanow Batch 

Create dataset, 
tables, and 
models to 

receive stream 

Activate 

Third-party Bl 

Cloud 
Functions 

Build real•time 
dashboards and 

call external APls 

https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-ai-platform-pipelines
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MLSys Edge Deep Learning Papers on the Edge

• Top conference at interface of Systems and AI; >50% Industry

• Federated Optimization in Heterogeneous Networks; Distributed AI Loss functions

• SkyNet: a Hardware-Efficient Method for Object Detection and Tracking on 

Embedded Systems: Image analysis on edge

• MNN: A Universal and Efficient Inference Engine: Edge inference with CPU used in 

production by Alibaba (Strassen’s algorithm)

• Predictive Precompute with Recurrent Neural Networks: DNN to predict user actions 

and suggest precomputing used in production by Facebook

• Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired Neural Networks for 

Edge Devices: optimize scheduling 

• PoET-BiN: Power Efficient Tiny Binary Neurons: Deep Learning on FPGA’s and 4 

other papers on edge quantization (low precision)

• Rest of papers (total 34 in main track) on server side and all focus on direct System-

Deep Learning Integration
12
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Deep Learning Prediction of 
Fusion Tokomak Instabilities
An example of Spatial Deep Learning

Streaming data at one per ms rate

fed into CNN’s followed by LSTM’s

Creates “Disruption Alarm”

● Predicting disruptive 

instabilities in controlled fusion 

plasmas through deep learning

● Kates-Harbeck, Julian; 

Svyatkovskiy, Alexey; Tang, 

William

● Nature 
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http://arxiv.org/abs/1905.11395 X Geng, X Wu, L Zhang, Q Yang, Y Liu, J Ye, (Didi, HK, USC)

“Multi-Modal Graph Interaction for Multi-Graph Convolution Network in Urban Spatiotemporal Forecasting” 

built on 3 different graphs (roads, function, geometry) plus RNN

Apply to Ride-Hailing

Few minutes - hours-days-weeks

Spatio-temporal Forecasting 

r---------------------------1 
I I 

: Incorporating : 
I I 

' multi-relationship : 

,---------------------------~, 
: Contextual-gated : ~ 
I I 

: temporal modeling 
~ - -- - - --- -------------

() 

r--------------------------• 
: Non-euclidean i 
: spatial modeling : -- -- ------ ----------- -~ 

Geng et al., AAA/ 2019 

http://arxiv.org/abs/1905.11395
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Indianapolis 500 Real-Time Anomaly Detection and Ranking Prediction 

Data Sources

Sensor data for IndyCar races.
Statistics of previous years: https://www.indycar.com/Stats

Selection of Features

Ranking prediction mainly depends on three measurable factors: 
● Past performance: Time series data.
● Current position: The current Lap and Lap Distance.
● Remaining fuel: The time difference from the last Pit Stop.

Data Preprocessing

Streaming data is adjusted to appropriate representation of time-series 
vector by interpolation methods. 

Judy Qiu Indiana University and Jiayu Li in Research 

Group

Indy Car Race Analysis

Real-time video, track data, car sensor data

https://www.indycar.com/Stats
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Ranking Prediction

Features Used

Position: The current position of the car.
Previous Pitstop: How long has passed since the last pit stop.

Dimensions of the Data Sets

A total of 66 features: 33 cars * 2 features each.
Each sample lasts approximately 10,000 seconds

Model Output

Probability distribution of the leading car.

Indy500 Rank Prediction using LSTM on Streaming Data

Time 
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Denoising Images from Light Sources (Argonne, IU)

1024 by 1024 Image

17

Paper from SC20 Workshop

Scientific Image Restoration Anywhere

Vibhatha Abeykoon, Zhengchun Liu, 

Rajkumar Kettimuthu, Geoffrey Fox and 

Ian Foster

Edge TPU’s
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Learn Newton’s laws with Recurrent Neural Networks

• (work with JCS Kadupitiya, Vikram Jadhao)

• Deep Learning is revolutionizing (spatial) Time series 

Analysis

• Good example is integrating sets of differential equations

• Train the network on traditional 5 time step series from 

(Verlet) difference equations

• Verlet needs time step .001 for reliable integration but

• Learnt LSTM network is reliable for time steps which 

are 4000 times longer and also learn potential.

Speedup is 30000 on 16 

particles interacting with 

Lennard-Jones potentials

• 2 layer-64 units per layer 

LSTM network: 65,072 

trainable parameters

• 5000 training simulations

18

RNN Error2 up to step size 

dT=4 and total time 106

Verlet error2
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Hidden Theories and Hidden Instances

• The LSTM description of particle dynamics suggests that the DNN has 

learnt “Newton’s laws” and then you look at different instances in the 

inference

• To the right is model learning simulated earthquakes

• Below are two predictions compared to observation for annual earthquake 

activity in Southern California (each pixel is about 11 km square)

• Uses Convolutional LSTM with 5 time steps and data is log of aggregated 

energy released (can’t use energy as too large a dynamic range)
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DNN learns theories
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Deep Learning in Particle Physics Data Analysis

20

● Train on LHC and simulation events with input as angular distribution of momentum 
in a 4π steradian detector i.e. you have total energy transmitted in each direction on 
sphere surrounding interaction point

Energy 

flowing in 

each 

direction

Different physics 

gives different 

patterns of particles

LHC 

Events

q/g 

/W/Z-+qq 
-+W --+qq 
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● (Caltech) Observables for the analysis of 
event shapes in e+ e− annihilation and other 
processes, GC Fox, S Wolfram, Physical 
Review Letters 1978, 1648 citations (50 in 
2019) introduced quantities to characterize 
shapes of collections of particles. They were 
invariant exactly to rotations and 
approximately to unknown details of decays of 
hidden particles (quarks, gluons, Higgs, W/Z 
bosons) as involved sums over momenta 
preserved in decays

○ Need tiny computing!

● (Caltech, Fermilab, CERN) arXiv:1908.05318 
from CMS introduces JEDI-NET with 3 DNN’s 
for this

● This just one of many classic ideas replaced 
by deep learning.

Deep Learning in Particle Physics 
Data Analysis

JEDI-NET

Fox Wolfram 

Moments
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Conclusions: Reiterate Simple Observations
• Consider Science Research Benchmarks in MLPerf

• Enhance collaboration between Industry and Research; HPC and MLPerf/MLSys communities

• Support common environments from Edge to Cloud and HPC systems

• Huge switch to Deep Learning for Big Data

• Many new algorithms to be developed

• Deep Learning for (Geospatial) Time Series (staple of the edge) incredibly promising: obvious 

relevance to Covid-19 studies

• Examples

• Inference at the edge

• Fusion instabilities

• Ride-hailing

• Indy car racing

• Images

• Earthquakes

• Solving ODE’s

• Particle Physics Events

• Timely versus real-time (throughput versus latency); both important
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