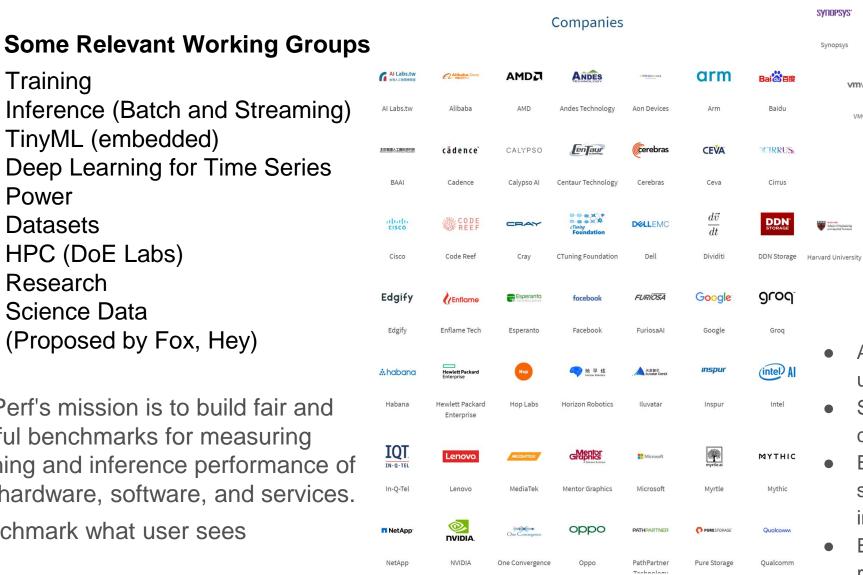
## Issues at the intersection of AI, Streaming, HPC, Data-centers and the Edge


NITRD Middleware and Grid Interagency Coordination Team (MAGIC) Geoffrey Fox 1 April 2020 Digital Science Center, Indiana University gcf@indiana.edu, http://www.dsc.soic.indiana.edu/

## **Some Simple Observations**

- Consider Science Research Benchmarks in MLPerf
- Enhance collaboration between Industry and Research; HPC and MLPerf MLSys communities
- Support common environments from Edge to Cloud and HPC systems
- Huge switch to Deep Learning for Big Data
  - Many new algorithms to be developed
  - Deep Learning for (Geospatial) Time Series (staple of the edge) incredibly promising: obvious relevance to Covid-19 studies
- Examples
  - Inference at the edge
  - Fusion instabilities
  - Ride-hailing
  - Racing Cars
  - Images
  - Earthquakes
  - Solving ODE's
  - Particle Physics Events
- **Timely** versus **real-time** (throughput versus latency); both important

### Digital Science Center Al, Streaming, HPC

### **MLPerf Consortium Deep Learning Benchmarks**



69 Companies; 8 universities

Rpa2ai Samsung S.L.S Sigopt SiMa A Tencen TENSYR TERADYN 🗙 VMind Teradyne Transnire Venture VorifA VVAVE **E** XILINX **vm**ware Wekal Xiliny Wave Computing Wiwvni **Researchers from** Berkele Harvard University Stanford University University of University o Arkansas, Littlerock, California, Berkeley, Urbana Champaig Minnesota TORONTO

- Accelerate progress in ML via fair and useful measurement
- Serve both the commercial and research communities
- Enable fair comparison of competing systems yet encourage innovation to improve the state-of-the-art of ML
- Enforce replicability to ensure reliable results
- Keep benchmarking effort affordable so all can participate 3

Training

- Inference (Batch and Streaming)
- TinyML (embedded)
- Deep Learning for Time Series
- Power
- Datasets
- HPC (DoE Labs)
- Research
- Science Data (Proposed by Fox, Hey)

MLPerf's mission is to build fair and useful benchmarks for measuring training and inference performance of ML hardware, software, and services. Benchmark what user sees

Digital Science Center Al, Streaming, HPC

|                     | Closed Division Times             |             |                         |             |                          |      |                                           |                              |                                          |                                   |                            |                             |                   |                                |  |
|---------------------|-----------------------------------|-------------|-------------------------|-------------|--------------------------|------|-------------------------------------------|------------------------------|------------------------------------------|-----------------------------------|----------------------------|-----------------------------|-------------------|--------------------------------|--|
|                     |                                   |             |                         |             |                          |      |                                           | Benchmark results (minutes)  |                                          |                                   |                            |                             |                   |                                |  |
| MLPerf              | Т                                 | -<br>rai    | ining v                 | /0.6        |                          |      |                                           | lmage<br>classifi-<br>cation | Object<br>detection,<br>light-<br>weight | Object<br>detection,<br>heavy-wt. | Translation<br>, recurrent | Translation<br>, non-recur. | mendation         | Reinforce-<br>ment<br>Learning |  |
| MI Dorf             |                                   |             |                         |             |                          |      |                                           | ImageNet                     | сосо                                     | сосо                              | WMT E-G                    | WMT E-G                     | MovieLens-<br>20M | Go                             |  |
| MLPeri              |                                   |             |                         |             |                          |      |                                           | ResNet-50                    | SSD w/                                   | Mask-                             | WINT E-G                   | WIVIT E-G                   | 20101             | 60                             |  |
|                     | #                                 | Submitter   | System                  | Processor # | Accelerator              | #    | Software                                  | v1.5                         | ResNet-34                                |                                   | NMT                        | Transformer                 | NCF               | Mini Go                        |  |
|                     | Availab                           | le in cloud |                         |             |                          |      |                                           |                              |                                          |                                   |                            |                             |                   |                                |  |
|                     | 0.6-1                             | Google      | TPUv3.32                |             | TPUv3                    | 16   | TensorFlow, TPU 1.14.1.dev                | 42.19                        | 12.61                                    | 107.03                            |                            |                             |                   |                                |  |
|                     | 0.6-2                             | Google      | TPUv3.128               |             | TPUv3                    |      | TensorFlow, TPU 1.14.1.dev                |                              |                                          |                                   |                            |                             |                   |                                |  |
| Typical             | 0.6-3                             | Google      | TPUv3.256               |             | TPUv3                    |      | TensorFlow, TPU 1.14.1.dev                | 6.86                         |                                          |                                   |                            |                             | [1]               |                                |  |
| Typical             | 0.6-4                             | Google      | TPUv3.512               |             | TPUv3                    |      | TensorFlow, TPU 1.14.1.dev                |                              | -                                        |                                   | 2.51                       | 1.58                        |                   |                                |  |
| Benchmarks          | 0.6-5                             | Google      | TPUv3.1024              |             | TPUv3                    |      | TensorFlow, TPU 1.14.1.dev                |                              | 1.34                                     |                                   | 2.11                       |                             |                   |                                |  |
|                     | 0.6-6                             | <u> </u>    | TPUv3.2048              |             | TPUv3                    | 1024 | TensorFlow, TPU 1.14.1.dev                | 1.28                         | 1.21                                     |                                   |                            | 0.85                        | [1]               |                                |  |
| 2048 TPUs or        |                                   | le on-premi |                         |             |                          |      |                                           |                              |                                          |                                   |                            |                             |                   |                                |  |
| 1536 V100's with    | 0.6-7                             | Intel       | 32x 2S CLX 8260L        | CLX 8260L 6 |                          | 0    | TensorFlow                                | 445.00                       |                                          |                                   |                            |                             | [1]               | 14.43                          |  |
|                     | 0.6-8                             |             | DGX-1                   |             | Tesla V100               |      | MXNet, NGC19.05                           | 115.22                       | 22.36                                    | 007.40                            | 00.55                      | 00.04                       | [1]               |                                |  |
| Infiniband quite    | 0.6 <b>-</b> 9<br>0.6 <b>-</b> 10 |             | DGX-1<br>DGX-1          |             | Tesla V100<br>Tesla V100 |      | PyTorch, NGC19.05<br>TensorFlow, NGC19.05 |                              | 22.30                                    | 207.48                            | 20.55                      | 20.34                       |                   | 27.39                          |  |
| powerful            | 0.6-10                            | NVIDIA      | 3x DGX-1                |             | Tesla V100               |      | TensorFlow, NGC19.05                      |                              |                                          |                                   |                            |                             | [1]               | 13.57                          |  |
| poweriu             | 0.6-12                            |             | 24x DGX-1               |             | Tesla V100               |      | PyTorch, NGC19.05                         |                              |                                          | 22.03                             |                            |                             | [1]               | 15.57                          |  |
|                     |                                   | NVIDIA      | 30x DGX-1               |             | Tesla V100               |      | PyTorch, NGC19.05                         |                              | 2.67                                     | 22.00                             |                            |                             | [1]               |                                |  |
|                     |                                   | NVIDIA      | 48x DGX-1               |             | Tesla V100               |      | PyTorch, NGC19.05                         |                              | 2.07                                     |                                   | 1.99                       |                             | [1]               |                                |  |
|                     |                                   |             | 60x DGX-1               |             | Tesla V100               |      | PyTorch, NGC19.05                         |                              |                                          |                                   |                            | 2.05                        |                   |                                |  |
|                     |                                   | NVIDIA      | 130x DGX-1              |             | Tesla V100               |      | MXNet, NGC19.05                           | 1.69                         |                                          |                                   |                            |                             | [1]               |                                |  |
|                     |                                   |             | DGX-2                   |             | Tesla V100               |      | MXNet, NGC19.05                           | 57.87                        |                                          |                                   |                            |                             | [1]               |                                |  |
|                     | 0.6-18                            | NVIDIA      | DGX-2                   |             | Tesla V100               |      | PyTorch, NGC19.05                         |                              | 12.21                                    | 101.00                            | 10.94                      | 11.04                       |                   |                                |  |
|                     | 0.6-19                            | NVIDIA      | DGX-2H                  |             | Tesla V100               | 16   | MXNet, NGC19.05                           | 52.74                        |                                          |                                   |                            |                             | [1]               |                                |  |
|                     | 0.6-20                            | NVIDIA      | DGX-2H                  |             | Tesla V100               | 16   | PyTorch, NGC19.05                         |                              | 11.41                                    | 95.20                             | 9.87                       | 9.80                        |                   |                                |  |
|                     | 0.6-21                            | NVIDIA      | 4x DGX-2H               |             | Tesla V100               | 64   | PyTorch, NGC19.05                         |                              | 4.78                                     | 32.72                             |                            |                             | [1]               |                                |  |
|                     | 0.6-22                            | NVIDIA      | 10x DGX-2H              |             | Tesla V100               |      | PyTorch, NGC19.05                         |                              |                                          |                                   |                            | 2.41                        | [1]               |                                |  |
|                     |                                   | NVIDIA      | 12x DGX-2H              |             | Tesla V100               |      | PyTorch, NGC19.05                         |                              |                                          | 18.47                             |                            |                             | [1]               |                                |  |
|                     |                                   | NVIDIA      | 15x DGX-2H              |             | Tesla V100               |      | PyTorch, NGC19.05                         |                              | 2.56                                     |                                   |                            |                             | [1]               |                                |  |
|                     |                                   | NVIDIA      | 16x DGX-2H              |             | Tesla V100               |      | PyTorch, NGC19.05                         |                              |                                          |                                   | 2.12                       |                             | [1]               |                                |  |
|                     |                                   |             | 24x DGX-2H              |             | Tesla V100               |      | PyTorch, NGC19.05                         |                              |                                          |                                   | 1.80                       |                             | [1]               |                                |  |
|                     |                                   |             | 30x DGX-2H, 8 chips eac | :r          | Tesla V100               |      | PyTorch, NGC19.05                         |                              | 2.23                                     |                                   |                            |                             | [1]               |                                |  |
|                     | 0.0.00                            | -           | 30x DGX-2H              |             | Tesla V100               |      | PyTorch, NGC19.05                         | 0.55                         |                                          |                                   |                            | 1.59                        |                   |                                |  |
| Digital Science Cen |                                   | NVIDIA      | 32x DGX-2H              |             | Tesla V100               |      | MXNet, NGC19.05                           | 2.59                         |                                          |                                   |                            |                             | [1]               |                                |  |
|                     | 0.6-30                            | NVIDIA      | 96x DGX-2H              |             | Tesla V100               | 1536 | MXNet, NGC19.05                           | 1.33                         |                                          |                                   |                            |                             | [1]               |                                |  |

Benchmarks and rules

# MLPerf

## Inference v0.5

Dividiti is MLPerf member in Cambridge UK

 $d\vec{v}$ 

 $\frac{dt}{dt}$ 

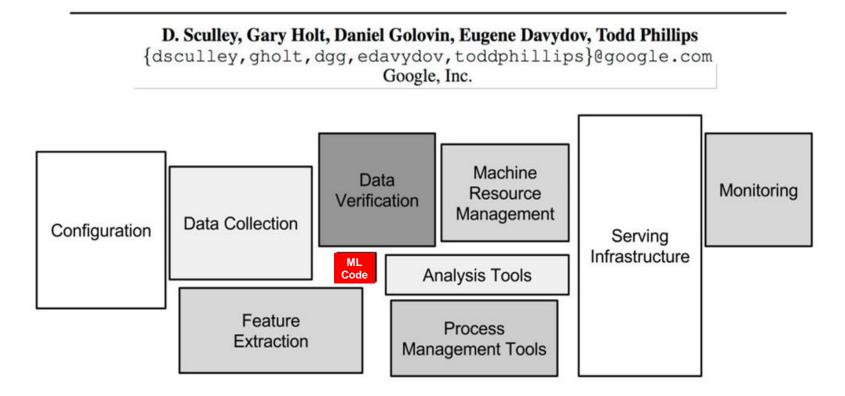
| Area     | Task                 | Model             | Dataset            | Quality                 | Server latency constraint | Multi-Stream latency constraint |
|----------|----------------------|-------------------|--------------------|-------------------------|---------------------------|---------------------------------|
| Vision   | Image classification | Resnet50-v1.5     | ImageNet (224x224) | 99% of FP32 (76.46%)    | 15 ms                     | 50 ms                           |
| Vision   | Image classification | MobileNets-v1 224 | ImageNet (224x224) | 98% of FP32 (71.68%)    | 10 ms                     | 50 ms                           |
| Vision   | Object detection     | SSD-ResNet34      | COCO (1200x1200)   | 99% of FP32 (0.20 mAP)  | 100 ms                    | 66 ms                           |
| Vision   | Object detection     | SSD-MobileNets-v1 | COCO (300x300)     | 99% of FP32 (0.22 mAP)  | 10 ms                     | 50 ms                           |
| Language | Machine translation  | GNMT              | WMT16              | 99% of FP32 (23.9 BLEU) | 250 ms                    | 100 ms                          |

| Closed Di   | ivision Times |                                                                        |                                                                                                                        |          |            |            |                |          |                     |              |                  |        |  |  |
|-------------|---------------|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|----------|------------|------------|----------------|----------|---------------------|--------------|------------------|--------|--|--|
|             |               |                                                                        | Benchmark results (Single Stream in milliseconds, MultiStream in no. streams, Server in QPS, Offline in inputs/second) |          |            |            |                |          |                     |              |                  |        |  |  |
|             |               |                                                                        | Image classifica                                                                                                       | ition    |            |            |                |          |                     |              | Object detection | i .    |  |  |
|             |               |                                                                        | ImageNet ImageNet                                                                                                      |          |            |            |                |          |                     |              | COCO             |        |  |  |
|             |               |                                                                        |                                                                                                                        |          |            |            |                |          |                     |              |                  |        |  |  |
|             |               |                                                                        |                                                                                                                        |          |            |            |                |          |                     |              |                  |        |  |  |
|             |               |                                                                        | MobileNet-v1                                                                                                           |          |            |            | ResNet-50 v1.5 |          | SSD w/ MobileNet-v1 |              |                  |        |  |  |
|             | Submitter     | System                                                                 | Stream                                                                                                                 | MultiS   | Server     | Offline    | Stream         | MultiS   | Server              | Offline      | Stream           | MultiS |  |  |
| CATEGORY: / |               |                                                                        |                                                                                                                        |          |            |            |                |          |                     |              |                  |        |  |  |
|             | Alibaba Cloud | Alibaba Cloud T4                                                       |                                                                                                                        |          |            | 17,473.60  |                |          |                     | 5,540.10     |                  |        |  |  |
| Inf-0.5-2   | Dell EMC      | Dell EMC R740                                                          |                                                                                                                        |          | 67,124.18  | 71,214.50  | )              |          | 20,742.83           | 22,438.00    |                  |        |  |  |
| Inf-0.5-3   | Dell EMC      | Dell EMC R740xd with 2nd generation Intel® Xeon®<br>Scalable Processor |                                                                                                                        |          |            |            |                |          |                     |              | 1.54             |        |  |  |
| Inf-0.5-4   | Dell EMC      | Dell EMC R740xd with 2nd generation Intel® Xeon®<br>Scalable Processor |                                                                                                                        |          |            |            |                |          |                     |              | 1.69             |        |  |  |
| Inf-0.5-5   | dividiti      | Raspberry Pi 4 (rpi4)                                                  | 394.34                                                                                                                 |          |            |            | 1,916.65       |          |                     |              |                  |        |  |  |
| Inf-0.5-6   | dividiti      | Raspberry Pi 4 (rpi4)                                                  | 103.60                                                                                                                 |          |            |            | 448.31         |          |                     |              |                  |        |  |  |
| Inf-0.5-7   | dividiti      | Linaro HiKey960 (hikey960)                                             | 121.11                                                                                                                 |          |            |            | 518.07         |          |                     |              |                  |        |  |  |
| Inf-0.5-8   | dividiti      | Linaro HiKey960 (hikey960)                                             | 50.77                                                                                                                  |          |            |            | 203.99         |          |                     |              |                  |        |  |  |
| Inf-0.5-9   | dividiti      | Linaro HiKey960 (hikey960)                                             | 143.07                                                                                                                 |          |            |            | 494.90         |          |                     |              |                  |        |  |  |
| Inf-0.5-10  | dividiti      | Huawei Mate 10 Pro (mate10pro)                                         | 74.20                                                                                                                  |          |            |            | 354.13         |          |                     |              |                  |        |  |  |
| Inf-0.5-11  | dividiti      | Huawei Mate 10 Pro (mate10pro)                                         | 111.60                                                                                                                 |          |            |            | 494.92         |          |                     |              |                  |        |  |  |
| Inf-0.5-12  | dividiti      | Firefly-RK3399 (firefly)                                               | 120.56                                                                                                                 |          |            |            | 695.11         |          |                     |              |                  |        |  |  |
| Inf-0.5-13  | dividiti      | Firefly-RK3399 (firefly)                                               | 106.49                                                                                                                 |          |            |            | 447.90         |          |                     |              |                  |        |  |  |
| Inf-0.5-14  | dividiti      | Firefly-RK3399 (firefly)                                               | 80.12                                                                                                                  |          |            |            | 391.02         |          |                     |              |                  |        |  |  |
| Inf-0.5-15  | Google        | Cloud TPU v3                                                           |                                                                                                                        |          |            |            |                |          | 16,014.29           | 32,716.00    | )                |        |  |  |
| Inf-0.5-16  | Google        | 2x Cloud TPU v3                                                        |                                                                                                                        |          |            |            |                |          |                     | 65,431.40    |                  |        |  |  |
| Inf-0.5-17  | Google        | 4x Cloud TPU v3                                                        |                                                                                                                        |          |            |            |                |          |                     | 130,833.00   |                  |        |  |  |
| Inf-0.5-18  | Google        | 8x Cloud TPU v3                                                        |                                                                                                                        |          |            |            |                |          |                     | 261,587.00   |                  |        |  |  |
| Inf-0.5-19  | Google        | 16x Cloud TPU v3                                                       |                                                                                                                        |          |            |            |                |          |                     | 524,978.00   |                  |        |  |  |
| Inf-0.5-20  | Google        | 32x Cloud TPU v3                                                       |                                                                                                                        |          |            |            |                |          |                     | 1,038,510.00 | )                |        |  |  |
| Inf-0.5-21  | Habana Labs   | HL-102-Goya PCI-board                                                  |                                                                                                                        |          |            |            | 0.24           | 700.00   |                     | 14,451.00    | )                |        |  |  |
| Inf-0.5-22  | Intel         | Intel® Xeon® Platinum 9200 processors                                  |                                                                                                                        |          |            |            |                |          |                     |              | 1.40             |        |  |  |
| Inf-0.5-23  | Intel         | Intel® Xeon® Platinum 9200 processors                                  | 0.49                                                                                                                   |          | 27,244.81  | 29,203.30  | 1.37           |          | 4,850.62            | 5,965.62     |                  |        |  |  |
| Inf-0.5-24  | Intel         | DELL ICL i3 1005G1                                                     | 3.55                                                                                                                   |          |            | 507.71     | 13.58          |          |                     | 100.93       | 6.67             |        |  |  |
| Inf-0.5-25  | NVIDIA        | Supermicro 4029GP-TRT-OTO-28 8xT4 (T4x8)                               |                                                                                                                        | 6,320.00 | 135,073.00 | 141,807.00 | )              | 1,920.00 | 41,546.64           | 44,977.80    | )                | 2,624. |  |  |
| Inf-0.5-26  | NVIDIA        | Supermicro 6049GP-TRT-OTO-29 20xT4 (T4x20)                             |                                                                                                                        |          |            |            |                |          | 103,532.10          |              |                  |        |  |  |
| Inf-0.5-27  | NVIDIA        | SCAN 3XS DBP T496X2 Fluid (TitanRTXx4)                                 |                                                                                                                        | 8,704.00 | 199,098.30 | 222,388.00 |                | 2,560.00 |                     |              |                  | 3,640. |  |  |
| Inf-0.5-28  | NVIDIA        | NVIDIA Jetson AGX Xavier (Xavier)                                      | 0.58                                                                                                                   | 302.00   |            | 6,520.75   | 2.04           | 100.00   |                     | 2,158.93     | 1.50             | 102.   |  |  |
| Inf-0.5-29  | Qualcomm      | SDM855 QRD                                                             | 3.02                                                                                                                   |          |            |            | 8.95           |          |                     |              |                  |        |  |  |

## Science Data and MLPerf I

- Suggest that MLPerf should address Science Research Data
- There is no existing scientific data benchmarking activity with a similar flavor to MLPerf -- namely addressing important realistic problems aiming at modern data analytics including deep learning on modern high-performance analysis systems.
- Further, the challenges of science data benchmarking both benefit from the approach of MLPerf and will be synergistic with existing working groups.
- Science like industry involves edge and data-center issues, inference, and training, There are some similarities in the datasets and analytics as both industry and science involve image data but also differences;
  - Science data associated with simulations and particle physics experiments are quite different from most industry exemplars.
- Science datasets are often large and growing in size, while the multitude of active areas gives diverse challenges. The best practice science algorithms are shifting to deep learning approaches as in industry today.
- Benchmarks will help more science fields take advantage of modern ML and increase link between Industry and Research
- Setting up first working group meeting: Tell me if you are interested

## Science Data and MLPerf II


- We foresee that scientific machine learning benchmarks for MLPerf will include a number of datasets, from each of the scientific domains, along with a representative problem from those domains. Some example benchmarks where we already have contacted scientists are:
  - Classifying cloud types from **satellite** imagery (**environmental sciences**)
  - Photometric redshift estimation based on observational data (astronomy), and
  - Removing noise from **microscopic** datasets (life and material sciences)
  - Real-time monitoring and archival analysis of data from light sources at DIAMOND (UK) and DoE Laboratories (US) (Biological and Material sciences)
  - Simulations covering near term recurrent neural networks and long term studies with fully connected and convolutional networks. This would initially be taken from biomolecular and material science areas but these examples will lead to work across many fields
  - Time series of **geographically distributed disease** occurrences with simulated and observed data
  - Monitoring of **plasma instabilities** in **fusion** Tokamaks with observation and simulation
- When fully contributed, the benchmark suite will cover the following domains: material sciences, environmental sciences, life sciences, fusion, particle physics, astronomy, earthquake and earth sciences, with more than one representative problem from each of these domains

## Linkage of Deep Learning (AI) and High Performance Computing

- On general principles, **Big data** stresses capabilities of compute/data platforms and needs best possible performance and **naturally uses HPC** 
  - HPC are not just Supercomputers and the use of HPC for deep learning is pervasive in both industry and academia/government
  - Cloud/Supercomputer/HPC Cluster: GPU and TPU
  - Edge: FPGA Edge GPU, Edge TPU, Custom ...
  - Large number of new architectures focussed on AI, CPU also useful!
- As well as HPC for AI (GPU's for deep learning), dramatic progress on AI for HPC enhancing simulations with 100's of papers in last 3 years
- PyTorch and TensorFlow (maybe MXNET) dominate; should collaborate on enhancing these and building systems around them
- Hyper-parameter search needs to be deployed broadly; places like IU do not have resources to support extensive hyper-parameter search but more common in Industry and DoE
- Need to advance tools for time series: LSTM, GRU, ConvLSTM, CNN+LSTM, Reformer, Transformer
  - Industry logistics, ride-hailing, speech, image streams but science can be different
- Need to advance deep learning for clustering, dimension reduction and other classic machine learning problems

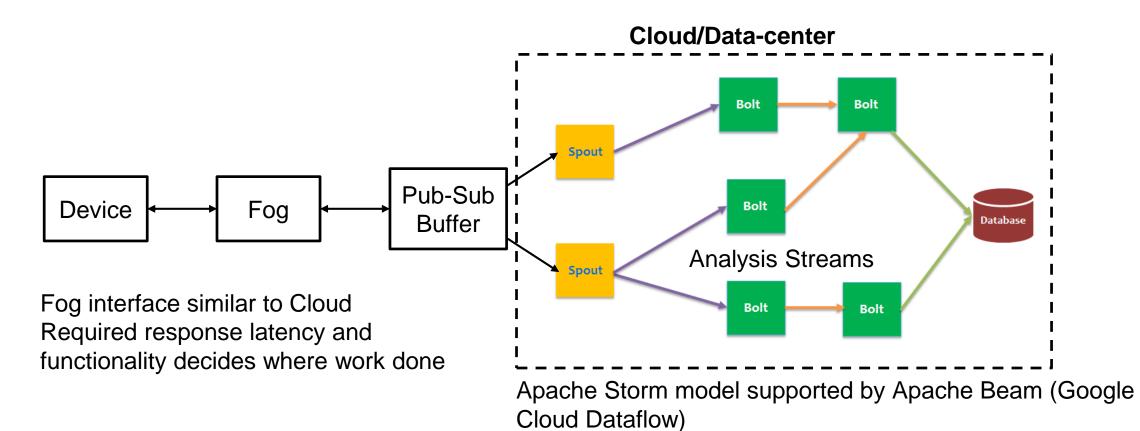
### **HPCforML: Integration Challenges**

### **Hidden Technical Debt in Machine Learning Systems**



"Only a fraction of real-world ML systems is composed of ML code"

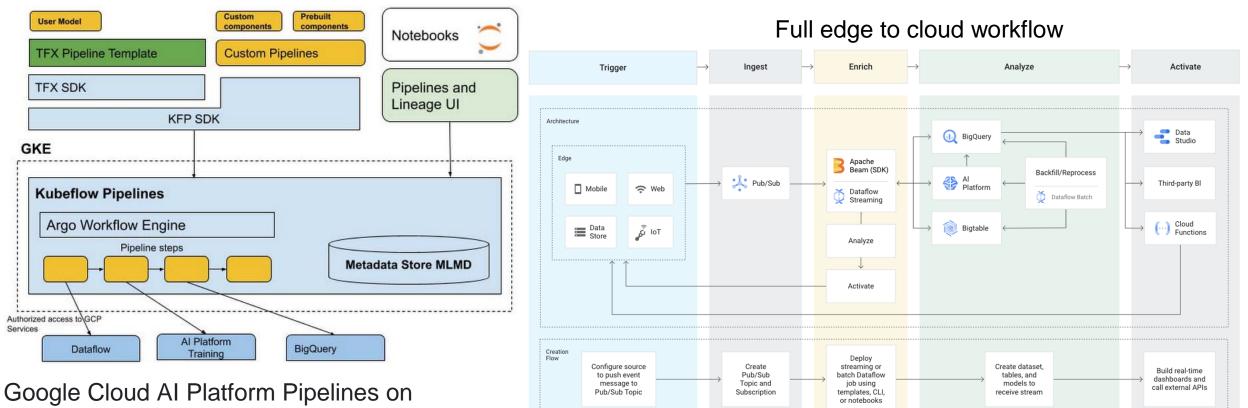
NIPS 2015 http://papers.nips.cc/paper/5656-hidden-technical-debt-in-machine-learning-systems.pdf


This well-known paper points out that parallel highperformance machine learning is perhaps most fun but just a part of system. We need to integrate in the other data and orchestration components.

This integration is not very good or easy partly because data management systems like Spark are JVM-based which doesn't cleanly link to C++, Python world of highperformance ML

My project Twister2 at IU addresses this problem

Not much addressed at MLSys

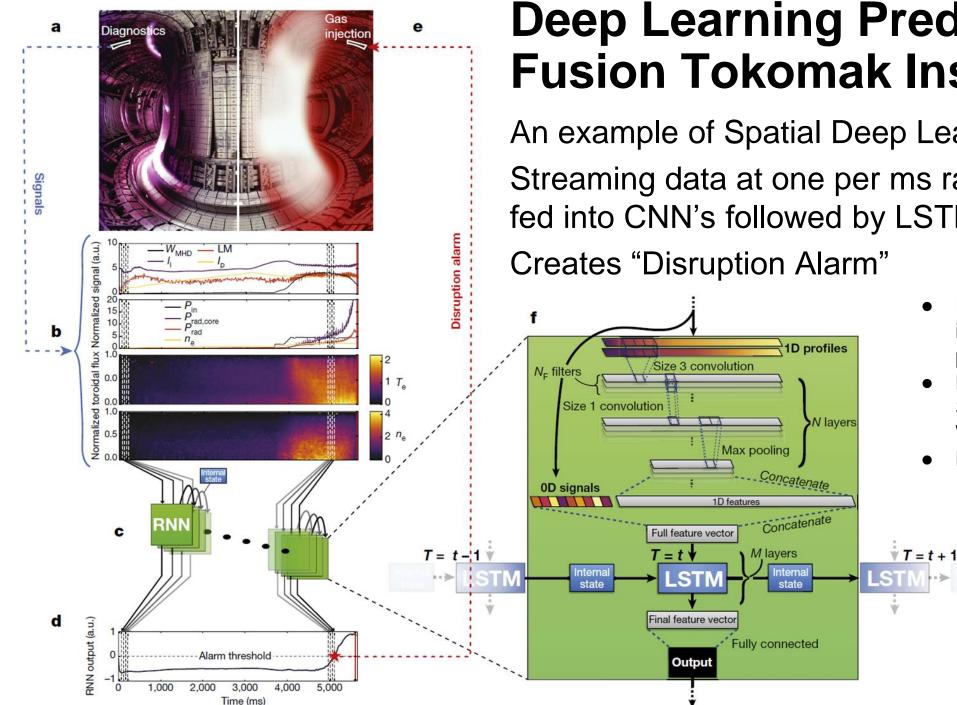

## **Classic Streaming Software Solution**



Streaming software surrounded by well known Big Data Engineering Systems such as Spark, Flink, Hadoop, MongoDB and use Serverless (Function as a Service) architecture Java Python C++ integration not so easy with good performance

### Apache Beam, Kubeflow, Argo: Typical Industry Edge to Cloud Workflow

- Recent Industry solution aimed at AI workflows constructed as a graph of containers
- March 11, 2020 https://cloud.google.com/blog/products/ai-machine-learning/introducing-cloud-ai-platform-pipelines



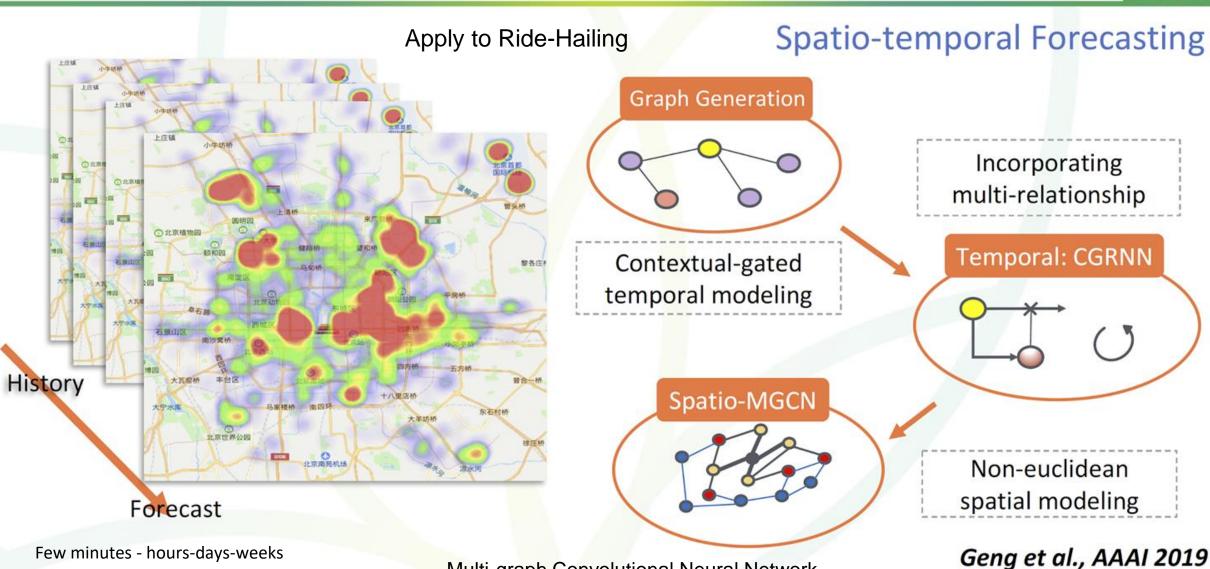

Kubernetes

General DAG connected containers

## MLSys Edge Deep Learning Papers on the Edge

- Top conference at interface of Systems and AI; >50% Industry
- Federated Optimization in Heterogeneous Networks; Distributed AI Loss functions
- SkyNet: a Hardware-Efficient Method for Object Detection and Tracking on Embedded Systems: Image analysis on edge
- MNN: A Universal and Efficient Inference Engine: Edge inference with CPU used in production by Alibaba (Strassen's algorithm)
- Predictive Precompute with Recurrent Neural Networks: DNN to predict user actions and suggest precomputing used in production by Facebook
- Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired Neural Networks for Edge Devices: optimize scheduling
- PoET-BiN: Power Efficient Tiny Binary Neurons: Deep Learning on FPGA's and 4 other papers on edge quantization (low precision)
- Rest of papers (total 34 in main track) on server side and all focus on direct System-Deep Learning Integration




## **Deep Learning Prediction of Fusion Tokomak Instabilities**

An example of Spatial Deep Learning

Streaming data at one per ms rate fed into CNN's followed by LSTM's

- Predicting disruptive instabilities in controlled fusion plasmas through deep learning
- Kates-Harbeck, Julian; Svyatkovskiy, Alexey; Tang, William
- Nature

http://arxiv.org/abs/1905.11395 X Geng, X Wu, L Zhang, Q Yang, Y Liu, J Ye, (Didi, HK, USC) "Multi-Modal Graph Interaction for Multi-Graph Convolution Network in Urban Spatiotemporal Forecasting" built on 3 different graphs (roads, function, geometry) plus RNN




IJCΔI

2019 Macao

Multi-graph Convolutional Neural Network

### **Indianapolis 500 Real-Time Anomaly Detection and Ranking Prediction**



#### **Data Sources**

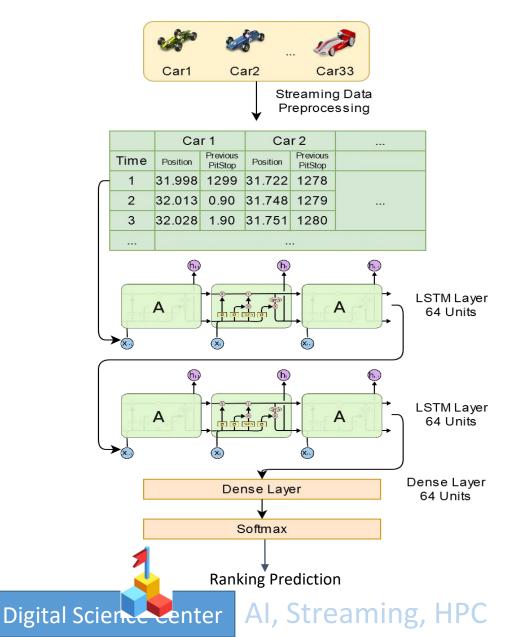
Sensor data for IndyCar races. Statistics of previous years: <u>https://www.indycar.com/Stats</u>

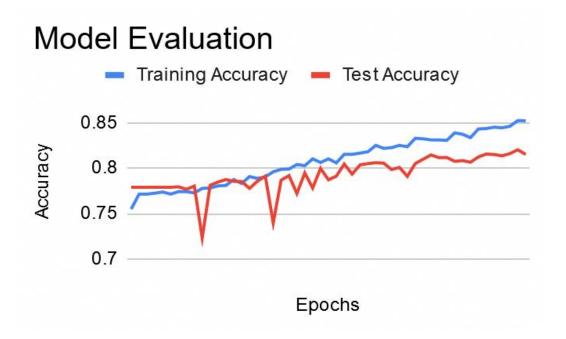
#### **Selection of Features**

Ranking prediction mainly depends on three measurable factors:

- Past performance: Time series data.
- **Current position:** The current Lap and Lap Distance.
- **Remaining fuel:** The time difference from the last Pit Stop.

#### **Data Preprocessing**


Streaming data is adjusted to appropriate representation of time-series vector by interpolation methods.


#### Judy Qiu Indiana University and Jiayu Li in Research Group Indy Car Race Analysis

Real-time video, track data, car sensor data

### Digital Science Center Al, Streaming, HPC

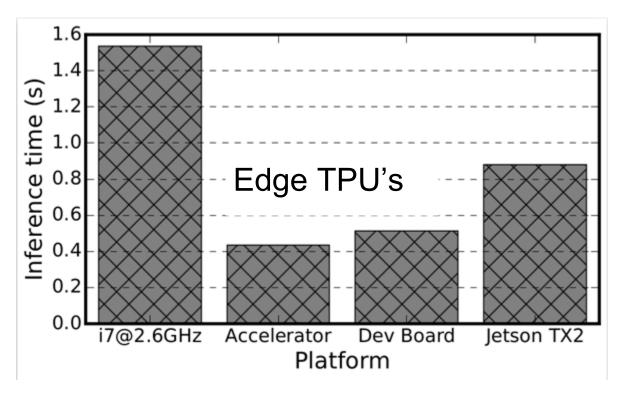
### Indy500 Rank Prediction using LSTM on Streaming Data





#### Features Used

Position: The current position of the car. Previous Pitstop: How long has passed since the last pit stop.

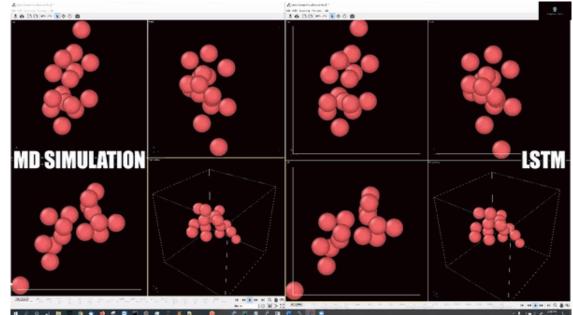

#### **Dimensions of the Data Sets**

A total of 66 features: 33 cars \* 2 features each. Each sample lasts approximately 10,000 seconds

#### Model Output

Probability distribution of the leading car.

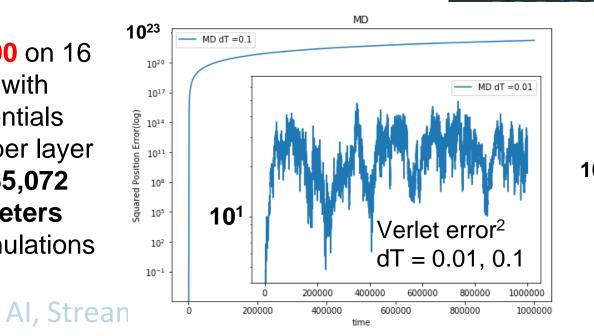
## **Denoising Images from Light Sources (Argonne, IU)**

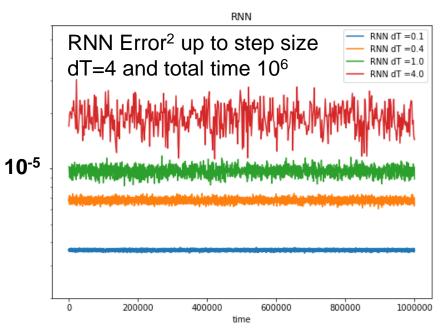



Paper from SC20 Workshop Scientific Image Restoration Anywhere Vibhatha Abeykoon, Zhengchun Liu, Rajkumar Kettimuthu, Geoffrey Fox and Ian Foster

1024 by 1024 Image

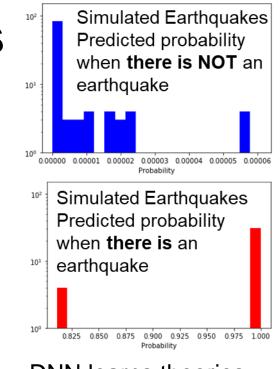
## Learn Newton's laws with Recurrent Neural Networks


- (work with JCS Kadupitiya, Vikram Jadhao)
- Deep Learning is revolutionizing (spatial) Time series Analysis
- Good example is integrating sets of differential equations
- Train the network on traditional 5 time step series from (Verlet) difference equations
- Verlet needs time step .001 for reliable integration but
- Learnt LSTM network is reliable for time steps which are **4000 times longer** and also learn potential.

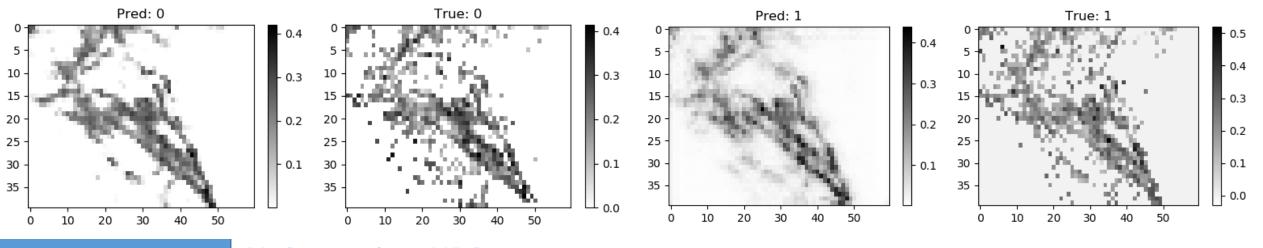



**Speedup is 30000** on 16 particles interacting with Lennard-Jones potentials

- 2 layer-64 units per layer
  LSTM network: 65,072
  trainable parameters
- 5000 training simulations

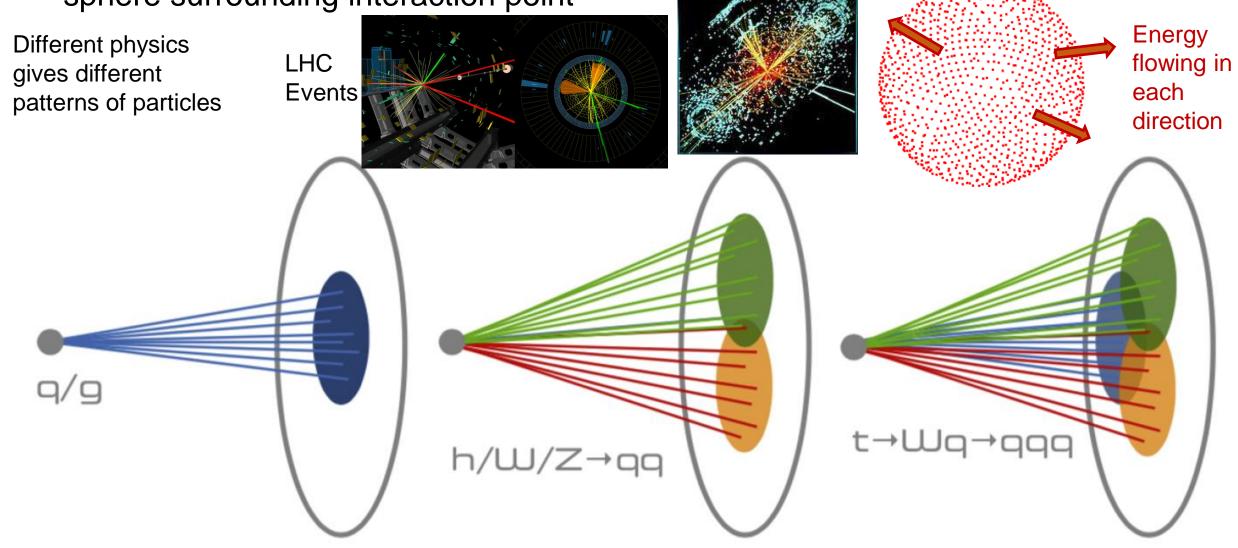

Digital Science Center





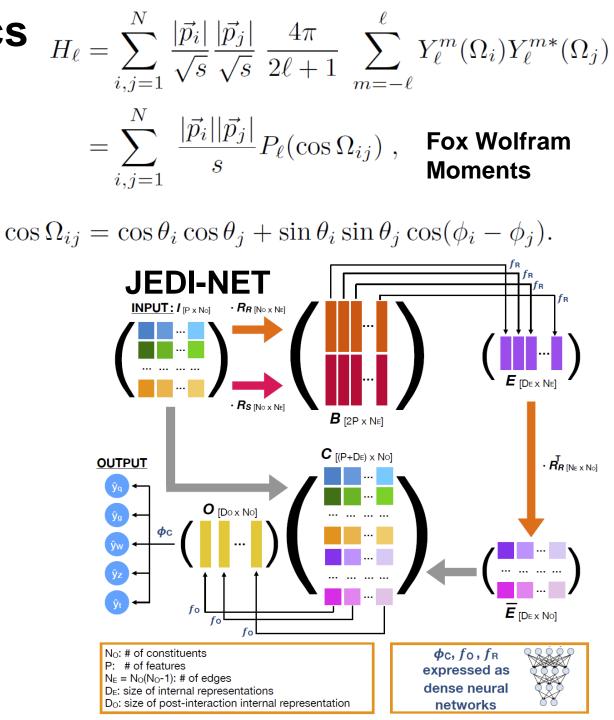

## **Hidden Theories and Hidden Instances**

- The LSTM description of particle dynamics suggests that the DNN has learnt "Newton's laws" and then you look at different instances in the inference
- To the right is model learning simulated earthquakes
- Below are two predictions compared to observation for annual earthquake activity in Southern California (each pixel is about 11 km square)
- Uses Convolutional LSTM with 5 time steps and data is log of aggregated energy released (can't use energy as too large a dynamic range)




**DNN** learns theories




## **Deep Learning in Particle Physics Data Analysis**

 Train on LHC and simulation events with input as angular distribution of momentum in a 4π steradian detector i.e. you have total energy transmitted in each direction on sphere surrounding interaction point



## Deep Learning in Particle Physics Data Analysis

- (Caltech) Observables for the analysis of event shapes in e+ e- annihilation and other processes, GC Fox, S Wolfram, Physical Review Letters 1978, 1648 citations (50 in 2019) introduced quantities to characterize shapes of collections of particles. They were invariant exactly to rotations and approximately to unknown details of decays of hidden particles (quarks, gluons, Higgs, W/Z bosons) as involved sums over momenta preserved in decays
  - Need tiny computing!
- (Caltech, Fermilab, CERN) arXiv:1908.05318 from CMS introduces JEDI-NET with 3 DNN's for this
- This just one of many classic ideas replaced by deep learning.



## **Conclusions: Reiterate Simple Observations**

- Consider Science Research Benchmarks in MLPerf
- Enhance collaboration between Industry and Research; HPC and MLPerf/MLSys communities
- Support common environments from Edge to Cloud and HPC systems
- Huge switch to **Deep Learning for Big Data** 
  - Many new algorithms to be developed
  - Deep Learning for (Geospatial) Time Series (staple of the edge) incredibly promising: obvious relevance to Covid-19 studies
- Examples
  - Inference at the edge
  - Fusion instabilities
  - Ride-hailing
  - Indy car racing
  - Images
  - Earthquakes
  - Solving ODE's
  - Particle Physics Events
- Timely versus real-time (throughput versus latency); both important

### Digital Science Center Al, Streaming, HPC

"Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Networking and Information Technology Research and Development Program."

The Networking and Information Technology Research and Development (NITRD) Program

Mailing Address: NCO/NITRD, 2415 Eisenhower Avenue, Alexandria, VA 22314

Physical Address: 490 L'Enfant Plaza SW, Suite 8001, Washington, DC 20024, USA Tel: 202-459-9674, Fax: 202-459-9673, Email: <u>nco@nitrd.gov</u>, Website: <u>https://www.nitrd.gov</u>

