
The Case for End-User Programming of Ubiquitous
Computing Environments

Seth Holloway and Christine Julien
Mobile and Pervasive Computing Group

The University of Texas at Austin
Austin, TX, USA

{sethh, c.julien}@mail.utexas.edu

ABSTRACT
Gone are the days that computers will be used by select
users sitting at a desk with a mouse and keyboard. The
next wave of computing, ubiquitous computing, is upon us.
With smart phones, tablet computers, and embedded sen-
sors/actuators flourishing, users are already interacting with
dozens of computers per day. A large body of research has
addressed many issues in hardware and software for the fu-
ture, but few have focused on the users. We posit that the
reason ubiquitous computing environments are still largely
unrealized is because research is technology-centric, with in-
adequate focus on users. To bridge this gap between what
technology can provide and what users need and want from
ubiquitous computing, we motivate the need for end-user
programming in ubiquitous computing environments and
provide a vision for enabling end-user programming. We be-
lieve that the software engineering community must provide
end-user programming capabilities in ubiquitous computing
environments if this domain is to reach its full potential.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Software Architecture—
domain-specific architectures

General Terms
Design, Human Factors, Standardization

Keywords
software engineering, end-user programming, ubiquitous com-
puting, vision

1. INTRODUCTION
Ubiquitous computing has been a heavily researched area

since the late 1980s [26], yet the predicted “third wave of
computing,” a world full of computers that calmly better our
lives [25], has fallen short. Indeed, ubiquitous computing en-
vironments stand to revolutionize the way we live. With the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

envisioned smart homes, smart workplaces, smart construc-
tion sites, etc., no human space will be left “dumb.” Un-
fortunately, our spaces are in fact still mostly dumb. Truly,
after great academic research and industrial efforts, ubiqui-
tous computing has become a reality—just not in the way
that was initially predicted. Computers are everywhere! In
cellular phones, cars, washers and dryers, refrigerators, TVs,
and many more everyday devices. Missing is the software to
federate these devices and make them work for us.

Perhaps the most commonly cited example of a future
ubiquitous computing environment is the smart home, where
sensors and actuators are embedded throughout the resi-
dence to monitor a diverse set of properties. Readings may
be coordinated to infer high-level conditions about the state
of the home and its occupants. Based on these conclusions
and some set of configured behaviors, a smart home can
affect changes to make the home’s occupants more comfort-
able, more productive, or to reduce costs. Other smart envi-
ronments follow similar high level flows (where sensed condi-
tions trigger actions), but their specific implementations and
goals will differ. One of the primary challenges in building
these smart spaces is the massive amounts of customization
necessary; the process of actualizing user needs and expec-
tations in hardware and software is not trivial. Due to the
large and varying individual needs for these applications, the
traditional software paradigm will not scale. To create indi-
vidualized environments, users cannot simply buy a COTS
solution and expect it to immediately satisfy their needs.

We must provide extensible architectures that allow users
to program their own smart environments. The architecture
should build on well understood web protocols, and research
should actively and continuously engage users. To support
this position, we first investigate some initial forays into sup-
porting development of ubiquitous computing applications;
then, we look at how end-user programming has been suc-
cessfully applied in other domains. We then move on to some
initial directions and our vision for end-user programming
applied to ubiquitous computing. Specifically, we report on
a formal survey of end users to start to uncover how they
“think” about intelligent environments so that an end-user
programming approach can be rationally structured.

2. UBIQUITOUS COMPUTING’S NEED
FOR END-USER PROGRAMMING

With large amounts of money and expertise, some form of
intelligence could be added to any space. Today’s commer-
cial systems are extremely human-intensive, requiring large
amounts of custom software development and configuration.

167

Commercial systems are controlled by the vendor using pro-
prietary, rather than open, standards. This prevents end-
users from extending their own environment; instead, users
have to go through the seller for any changes. This approach
is fundamentally flawed as it is unlikely that any single com-
pany could provide every sensor/actuator necessary for the
diverse ubiquitous computing applications worldwide.

There are many academic approaches that aim to make
ubiquitous computing a reality. We can place these ap-
proaches on a spectrum based on the amount of human
involvement. To one extreme is machine learning, which
places decision-making entirely in the hands of the system;
at the other extreme is end-user programming, which asks
the user to personally “program” the environment.

Machine learning can eliminate the need for humans in
the loop by automatically learning an inhabitant’s routine.
CASAS [17] provides a framework to automatically learn
behaviors but also provides the user with basic feedback
abilities. The user involvement is wonderful, but there are
additional needs to accommodate the full needed range of
expressiveness. Early activity recognition schemes [22] were
imprecise, with prediction accuracies as low as 25%. Other
approaches [3] have improved accuracy to at least 47% and
now achieve roughly 80% accuracy—a fine figure, but still
lacking with respect to satisfying end-users. These ma-
chine learning approaches also require preset information
that may be too detailed for users to provide and limits the
open-endedness and extensibility ubiquitous computing en-
vironments require. We believe that these machine learning
approaches must be deployed in conjunction with end-user
programming that can bolster the correctness and usabil-
ity of the system. For example, if the system senses events
not interesting to users, users could quickly and easily filter
out and disable those capabilities. Machine learning is also
difficult, if not impossible, when events are very rare (for
example, a burglary) or very complex (for example, home
healthcare where mistakes could have catastrophic results).

A number of projects have explicitly aimed to involve the
end-user in customizing the environment (broadly known as
end-user programming [12] or end-user software engineer-
ing [2]). Media Cubes [1] offers a tangible programming
interface similar to remote controls. Inhabitants associate
each face of a cube with a specific device’s action, for exam-
ple, turning on the television. Users can later perform the
associated action by turning the cube to the desired face. In
CRISTAL [5] users interact with a tabletop displaying a live
video feed of the space. The system is programmed to pro-
vide cues for interacting with each device, such as a play icon
superimposed on the television. This allows users to easily
understand what they are controlling, but there is no guar-
antee that the superimposed control will be natural or even
any notion of what is “natural” in this space. Extensibility
is also an issue; for example, what symbol will be super-
imposed on a new actuator placed in the environment? In
“Playing with the Bits” [8], users snap available components
together using a jig-saw puzzle metaphor. Unfortunately,
the subset of devices (represented as puzzle pieces) is lim-
ited by what the researchers can produce. CAMP [24], cre-
ated a “magnetic poetry” interface that mimics refrigerator
magnets. These magnets offer a set of words that partici-
pants can rearrange into phrases. This provides a different
interface for automated capture and playback (which allows

users to replay events that were automatically recorded in
the home).

Whether the projects involve the users a lot or a little,
previous research into software systems for ubiquitous com-
puting has typically targeted the enabling technologies re-
quired to sense and act upon the environment. This bottom-
up approach has enabled the development of powerful appli-
cations. However, the motivation for these applications is
traditionally provided by the developers and researchers as
a means to demonstrate their new engineering or technology
feats. There is not commonly a formal connection between
the programming task and its abstractions and the users of
the environments. We feel the mismatch between these ap-
plications and the expectations of mainstream users slows
adoption. It is our position that the community requires
a top-down approach to ubiquitous computing—one that is
centered around users. This is inherently an end-user pro-
gramming approach; in the next section, we will explain how
end-user programming has been adapted in other domains
to create powerful and successful platforms.

3. EXISTING END-USER PROGRAMMING
It is estimated that by 2012 there will be 90 million end-

user programmers [19]. This number includes traditional
programmers (roughly 13 million) as well as workers who
use spreadsheets and databases; however, people are now
performing similar programming feats as they extend func-
tionality in their favorite applications and platforms, making
virtually everyone an end-user programmer. In this section,
we detail some systems that allow for such end-user cus-
tomization and programming. By applying lessons learned
from these systems, we believe we can quickly create usable
ubiquitous computing environments.

Mobile Devices, Browsers, and Productivity
Tools. The widespread use of smartphones has made it ev-
ident that end-users are well-motivated to add functionality
to their devices by updating and adding new applications.
Browsers have become widely extensible with add-ons, and
productivity tools include macros that enable users to add
behavior to documents.

Databases and Spreadsheets. Traditionally, end-user
programming has focused largely on non-programmers’ in-
teractions with databases and spreadsheets. For example, a
SQL statement like SELECT * FROM Users can be created
by someone with rudimentary computer skills thanks to
straightforward interfaces that abstract low-level database
complexities and unfamiliar languages. Similarly, spread-
sheet interfaces allow virtually anyone to create advanced
mathematical formulas and perform analyses without im-
plementing the calculation functions. Similar end-user in-
teractions can be seen in several other prominent systems
where people extend functionality without using traditional
programming methods.

Games. Video games have also had great success with
allowing users to customize the application with extensible
platforms and interfaces that transform game internals into
easily edited graphical elements. For example, World of
Warcraft, a hugely popular1 roleplaying game, allows users
to customize the user interface and extend functionality by

1In 2008 there were over 11.5 million subscribers world-
wide (http://us.blizzard.com/en-us/company/press/
pressreleases.html?081121)

168

creating bundles programmed in Lua. To date, over 6,700
such extensions have been created and shared by users.

Diverse applications in domains from entertainment to
productivity have embraced end-user programming and cus-
tomization. End-users have demonstrated their comfort
with this paradigm; we believe this demonstrates that they
are ready and able to program their own ubiquitous comput-
ing environments. In the next section we discuss our vision
for a potential way forward with end-user programming ap-
plied to the envisioned ubiquitous computing environments.

4. THE WAY FORWARD
To start to get a handle on how an end-user program-

ming framework for ubiquitous computing would best be
structured, one must first ascertain how end-users think and
talk about their intelligent environments—that is, what they
want from ubiquitous computing.

4.1 Determining What Users Want From
Smart Environments

Many others (including [10, 13, 15, 16, 18, 20]) have sur-
veyed what users need and want from smart environments.
With a goal of capturing the users’ mental model of smart
home actions, we performed a large-scale user study [6]. We
chose smart homes because they are an easily understood
instantiation of ubiquitous computing. We asked users to
write three different policies for their smart home to follow:
two structured policies and one open-ended.

In 10 days online we received 64 completed responses (62
from the continental United States). Overall, people were
very excited about smart homes and the potential impact
of smart environments, such as this user: “[Smart homes]
sound very groovy and could make life a lot easier.” And
another user said, “Now someone just needs to make it eas-
ier to create smart homes.” In fact, many people begged for
simplicity and demanded a simple user-centered program-
ming interface for smart homes. We also found that despite
a great deal of interest among academics, very few users,
only 6%, expressed concerns for their privacy. One user
stated that the idea of the home having knowledge of his
schedule was “Too Big Brother for me.”

To formalize end-users’ mental model of smart environ-
ments, we wondered Are there any specific words or sentence
constructs used by respondents? To answer this question, we
analyzed the responses and found that conditional logic was
an extremely popular method of relaying smart home be-
haviors. A majority of respondents (73%) used some form
of conditional logic (“if,” “then,” “else,” “while,” “when”) to
describe the scenarios. This way of reasoning was expected
from highly technical people (for example, programmers who
use similar reserved words), but the use of conditional logic
was surprisingly common across all demographics.

While we gained many valuable insights from the survey,
two things were abundantly clear after reviewing responses:

• Different users desire vastly different behaviors from
their space, and

• Different users conceive of performing similar actions
in very different ways.

Very few users (5%) detailed situations described in re-
search; however, many wanted different vastly behaviors.
For example some users thought of their pets,

A system that senses that [the dogs] have emp-
tied the water dish (inside and out) and refills the
dish. Sometimes they drink lots and sometimes
during the day one of the dogs likes to play in the
water so they end up with very little water...

while others thought of automated cleaning:

Make bathrooms “self-cleaning” like those cool
port-o-potties in Paris. They close up like a dish-
washer and steam everything...

We expected many users would repeat our example sce-
narios, but few people did so. Therefore, we believe that it
is not hardware capabilities that are holding back ubiqui-
tous computing but serious software integration and usabil-
ity issues. Coupled with the fact that the end-users speci-
fied highly personalized scenarios, this demands straightfor-
ward, abstract, and usable end-user programming constructs
tailored for ubiquitous computing. People were very inter-
ested in automating their lighting, heating, and cooling. To
make the home comfortable, some people imagined opening
windows or closing blinds at the right time; others chose
standard air conditioning; others used even more complex
multi-device interactions. The most common applications
that users described required functionality that is already
commercially available, albeit obscure and expensive.

4.2 Vision
Our vision for the future of ubiquitous computing software

follows these three principles:

• Involve users in the design process,
• Create one extensible platform that accomplishes the

high-level task of mapping conditions to actions, and
• Build on powerful, widely deployed web protocols.

To speed adoption we must engage users in the design
process or the system will never be, well, usable. To be
maximally effective, the platform should be human-centric
and only moderately abstract [11]. The traditional software
conception of “programs are logic” is too computer-centric
and thus unusable by most users. If the platform is is too
concrete, it cannot not satisfy the wide range of possible
devices; if the implementation is too abstract it will negate
users’ ability to reason about the program. As a first step,
we should embrace the lessons learned by the personal com-
puting systems mentioned in Section 3 and informed by the
language mined from our structured survey. Not only is the
extensibility technologically sound, it also provides an im-
portant sociological effect: the ability to customize engages
users and improves the user experience [9].

Ubiquitous computing has visions covering virtually all
facets of life, ranging from the workplace to the home to
construction sites and beyond. At the core, these ubiqui-
tous computing environments simply perform actions when
conditions are met. The specific actions and conditions are
limited by the hardware available; for example, without a
light sensor, the environment cannot deterministically per-
form actions based on light level. Similarly, a smart envi-
ronment cannot sound an alarm without an alarm present.
Smart construction sites will have different hardware than
smart homes, just as the devices in an elderly person’s smart
home will differ from that of a healthy college student. Un-
fortunately, the scope in ubiquitous computing is nearly infi-
nite: an ever-expanding catalog of parts can be combined in

169

any combination. The mapping of conditions to actions will
be unique to each smart environment, so completely gen-
eral purpose solutions are infeasible. While domain-specific
frameworks have been studied (namely, smart homes), even
within a domain, the hardware and software combinations
are so large to make these solutions inflexible. Instead, we
envision one extensible software framework that allows ad-
ditional software and hardware functionality to be plugged
in—mirroring the systems described by the survey partici-
pants. Rather than creating and maintaining two completely
separate software solutions for two different smart environ-
ments, we should use the same general platform with differ-
ent sets of extensions. As in current systems, these exten-
sions could be created by users and made freely available.

To further ease development, building this ubiquitous
computing platform on web protocols enables tremendous
benefits. The Internet is arguably the most important tech-
nology of our time, and it will only continue to gain promi-
nence. Web protocols already have wide deployment, ro-
bustness, supporting frameworks, millions of skilled devel-
opers, terabytes of tutorials, free updates, and phenomenal
flexibility thanks to the widespread interoperability. This
approach also benefits from research into the promising web
of things (including [4, 14, 21, 23, 27]).

It is not necessary for ubiquitous computing solutions to
be on the Internet (in fact, many people may explicitly not
want their smart spaces to be accessible from anywhere), but
we believe that the solutions should build on web technolo-
gies. A web-enabled platform is easily achievable as devices
simply need to communicate using HTTP. We have shown
that using such web technologies to support ubiquitous com-
puting application development can be made straightfor-
ward and approachable [7]. Devices, including household ap-
pliances like washers and dryers, are now shipping with this
capability, so we just need the software to bring these ap-
pliances under administrative control. The platform server
could be written in any of the myriad web languages (Perl,
PHP, Java, Python, Ruby, ASP.NET, etc.) or their web
application frameworks. This diversity of languages pro-
vides incredible strength and extensibility that will drive
the growth of ubiquitous computing.

5. CONCLUSIONS
Ubiquitous computing is the present and the future. Per-

sonal computing will persist, but we must focus more at-
tention on ubiquitous computing. Our vision for the fu-
ture of ubiquitous computing software follows three prin-
ciples: (i) involve users in the design process, (ii) create
one extensible platform that accomplishes the high-level task
of mapping conditions to actions, and (iii) build on power-
ful, widely deployed web protocols. We believe that follow-
ing these principles will provide the most robust, shortest
path forward. Smart environments will not flourish unless
end-users are able to tailor systems to their liking; in the
domain of ubiquitous computing, this means mapping con-
ditions to actions, requiring expressive programming con-
structs. The technology necessary to create smart environ-
ments (sensors and actuators, computers, wireless network-
ing, etc.) is available—or will be—in the near-future; how-
ever, without further research into users’ desires and capa-
bilities and enablements for user programming of ubiquitous
computing environments, smart environments will not be

widely adopted. By focusing on users, smart environments
will move from an academic vision to a hugely useful reality.

Acknowledgments
The authors would like to thank EDGE for research facili-
ties. This work was funded, in part, by the National Science
Foundation (NSF), Grant # CNS-0620245. The views and
conclusions herein are those of the authors and do not nec-
essarily reflect the views of the sponsoring agencies.

6. REFERENCES
[1] A. Blackwell and R. Hague. AutoHAN: An

architecture for programming the home. In Proc. of
the IEEE Symp. on Human-Centric Computing
Languages and Environments, pages 150–157, 2001.

[2] M. Burnett, C. Cook, and G. Rothermel. End-user
software engineering. Commun. ACM, 47(9):53–58,
2004.

[3] D. Cook, M. Youngblood, E. Heierman III,
K. Gopalratnam, S. Rao, A. Litvin, and F. Khawaja.
MavHome: An agent-based smart home. In Proc. of
the 1st Int’l. Conf. on Pervasive Computing and
Communications, pages 521–524, 2003.

[4] S. Duquennoy, G. Grimaud, and J. Vandewalle. The
Web of Things: Interconnecting Devices with High
Usability and Performance. In Proceedings of the 2009
International Conference on Embedded Software and
Systems-Volume 00, pages 323–330. IEEE Computer
Society, 2009.

[5] M. Haller, P. Brandl, C. Richter, J. Leitner,
T. Seifried, A. Gokcezade, and D. Leithinger.
Interactive displays and next-generation interfaces. In
Hagenberg Research, pages 433–472. Springer Berlin
Heidelberg, 2009.

[6] S. Holloway, D. Stovall, and C. Julien. What Users
Want from Smart Environments. Technical Report,
UT-EDGE-2009-008, 2009.

[7] S. Holloway, D. Stovall, J. Lara-Garduno, and
C. Julien. Opening pervasive computing to the masses
using the seap middleware. In Proc. of the Middleware
Support for Pervasive Computing Workshop, 2009.

[8] J. Humble, A. Crabtree, T. Hemmings, K. Åkesson,
B. Koleva, T. Rodden, and P. Hansson. “Playing with
the Bits” User-configuration of Ubiquitous Domestic
Environments. In Proc. of Ubicomp, 2003.

[9] A. J. Kim. Community Building on the Web: Secret
Strategies for Successful Online Communities.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2000.

[10] S. Kim, S. Kim, and H. Park. Usability challenges in
ubicomp environment. Proc. of Int’l. Ergonomics
Assoc., 2003.

[11] A. Ko, B. Myers, and H. Aung. Six learning barriers
in end-user programming systems. In Proc. of the
IEEE Symp. on Visual Languages and Human Centric
Computing, pages 199–206, 2004.

[12] H. Lieberman, F. Paterno, M. Klann, and V. Wulf.
End-user development: An emerging paradigm. In
End User Development, volume 9 of Human-Computer
Interaction Series, pages 1–8. Springer Netherlands,
2006.

170

[13] F. Mäyrä, A. Soronen, J. Vanhala, J. Mikkonen,
M. Zakrzewski, I. Koskinen, and K. Kuusela. Probing
a proactive home: Challenges in researching and
designing everyday smart environments. Human
Technology, 2(2), 2006.

[14] S. Microsystems. The APIs for the Sun Cloud —
Project Kenai. homepage of the Sun Cloud API
project. [Online]. Available:
http://kenai.com/projects/suncloudapis/pages/Home,
2009.

[15] M. Mokhtari and M. Feki. User needs and usage
analysis in a smart environment for people requiring
assistance. Topics in Geriatric Rehab., 23(1):52, 2007.

[16] A. Nijholt, R. op den Akker, and D. Heylen. Meetings
and meeting modeling in smart surroundings. Social
Intelligence Design, pages 145–158, 2004.

[17] P. Rashidi and D. Cook. Keeping the intelligent
environment resident in the loop. In Proc. of the 4th
Int’l. Conf. on Intelligent Environments, 2008.

[18] E. Rukzio, K. Leichtenstern, V. Callaghan, P. Holleis,
A. Schmidt, and J. Chin. An experimental comparison
of physical mobile interaction techniques: Touching,
pointing and scanning. Proc. of Ubicomp, 2006.

[19] C. Scaffidi, M. Shaw, and B. Myers. Estimating the
numbers of end users and end user programmers. In
Visual Languages and Human-Centric Computing,
2005 IEEE Symposium on, pages 207–214, Sept. 2005.

[20] J. Sousa, V. Poladian, D. Garlan, B. Schmerl, and

M. Shaw. Task-based adaptation for ubiquitous
computing. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on,
36(3):328 –340, may. 2006.

[21] V. Stirbu. Towards a restful plug and play experience
in the web of things. In 2008 IEEE International
Conference on Semantic Computing, pages 512–517,
2008.

[22] E. Tapia, S. Intille, and K. Larson. Activity
recognition in the home using simple and ubiquitous
sensors. Pervasive Computing, pages 158–175, 2004.

[23] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou,
J. Hugly, and E. Pouyoul. Project JXTA-C: Enabling
a web of things. In System Sciences, 2003. Proceedings
of the 36th Annual Hawaii International Conference
on, page 9, 2003.

[24] K. Truong, E. Huang, and G. Abowd. CAMP: A
magnetic poetry interface for end-user programming of
capture applications for the home. Proc. of Ubicomp,
2004.

[25] M. Weiser. The computer for the 21st century.
SIGMOBILE, 3(3):3–11, 1999.

[26] M. Weiser, R. Gold, and J. Brown. The origins of
ubiquitous computing research at PARC in the late
1980s. IBM Systems Journal, 38(4):693–696, 1999.

[27] E. Wilde. Putting things to rest. School of
Information, 2007.

171

