
Understanding Context:
Creating a Lasting Impact in Experimental Software

Engineering Research

Emerson Murphy-Hill
North Carolina State

University
emerson@csc.ncsu.edu

Gail C. Murphy
University of British

Columbia
murphy@cs.ubc.ca

William G. Griswold
University of California

San Diego
wgg@ucsd.edu

ABSTRACT
Software is developed for and in a vast number of contexts.
Some software systems are small in size; some large. Some
systems are developed by small teams; some large. Some
projects are sensitive to schedule, others to safety of the
users. In this position paper, we argue that to make a lasting
impact with the software engineering research we conduct,
we must understand, make explicit, and vary the context
in which our conclusions are drawn. Moreover, we need a
better understanding of how research results can be trans-
lated or generalized to other contexts, as it is not econom-
ically feasible to replicate results across all contexts. We
argue that a successful solution to this problem will allow
researchers to conduct research within particular contexts,
richly characterize those contexts in their writings, and allow
other researchers to predictably build on those in differing
contexts.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General

General Terms
Experimentation, Measurement

Keywords
Software Engineering Research, Methodology

1. THE PROBLEM
Researchers often perform studies to demonstrate that the

concepts and tools that they propose will have a significant
impact on the practice of software engineering. The goal is
that the study should give the community confidence that
the concepts and tools will have a significant positive effect
on how software is developed, both in the short-term and
in the long-term. However, this is difficult to achieve for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

many reasons, one of which is that it is difficult to perform
an empirical study that is convincing.

For example, consider Müller and Tichy’s study of ex-
treme programming [8], which investigates the successes and
challenges of the extreme programming software process.
One of their findings was that pair programming is difficult
to implement without coaching. If this result is generally
true for groups of software developers other than the ones
investigated during this study, then this research finding is
likely to have a high research impact, because software teams
should hire a coach when adopting pair programming. But
what confidence do we have that that their result really is
generally true? To answer this question, we have to under-
stand a bit about context.

By context, we mean the setting in which software engi-
neering is practiced. Examples include the working styles
of software developers (for example, hypothesis-driven or
cause/effect driven), the values held by a development team
(coding heroics or team builders), the cultural background
of the developers (American or Chinese), the paradigm of
the code (object-oriented or procedural), and the kind of in-
dustry for which the software is being developed (entertain-
ment or health care). Context, then, is a multi-dimensional
space with an infinite number of points, each point defining
a particular software project at a particular time.

So to answer the question about what confidence we can
have about Müller and Tichy’s results, consider three di-
mensions of context in which the study took place:

• The study was conducted with students as software de-
velopers rather than professional software developers.
This participant group reduces our confidence that the
results generally hold because most software develop-
ers are professionals, not students.

• The participants implemented software over about eight
hours. This duration reduces our confidence that the
results generally hold because most software projects
take place over more than eight hours.

• The participants completed small programming exer-
cises. This task set reduces our confidence that the
results generally hold because most deployed software
is not developed as part of an exercise.

These issues illustrate the difficulty in performing convincing
studies (as well as the ease with which a reader can criticize
them).

The flippant answer to this problem is that Müller and
Tichy did the wrong study, that they should have instead

255

done their study with professional software developers rather
than students, should have conducted the study over a pe-
riod of years, and should have had participants complete
real software projects rather than exercises. While these
suggestions might have been feasible, the study that the re-
searchers performed was nonetheless appropriate because at
the time the study was conducted; the research community
knew little about the then-nascent practice of pair program-
ming. At the time, this more limited, cost-effective study
was warranted to postulate and provide some preliminary
evidence for the efficacy of pair programming. Afterwards,
follow-up studies in a broader context – such as with pro-
fessional developers – could evaluate and refine Müller and
Tichy’s findings. Yet, as a community, we often demand
that researchers perform studies in “more realistic” contexts
without considering whether those contexts are warranted.

This example suggests that the issue of context is subtle
and can easily be overlooked in the quest for better soft-
ware engineering research. However, we argue that software
engineering research should pay more careful attention to
the context in which software engineering is performed, to
increase the impact of the research and the improve our abil-
ity to build upon that research.

2. CALL TO ACTION
Here we present five ways that we can pay more atten-

tion to the context in which software engineering is prac-
ticed. Our suggestions are based on our own personal experi-
ences as researchers and reviewers. We state our suggestions
as calls to action for the researcher, but these suggestions
should also be considered by reviewers when weighing the
merits of a research result.

2.1 Building Foundational Results
Our first suggestion is that the community should expend

more effort on exposing the foundations of software engi-
neering. By foundations, we mean results that are likely to
apply in both present and future software engineering con-
texts.

For example, much research has been done on tools that
find design defects in software (for example, [3], [9], and
[10]). While these tools may perform well in, for example,
contexts where object-oriented programming is the domi-
nant paradigm, it is difficult to judge from this research
whether the tools will apply equally well in other contexts.
On the other hand, research from Mäntylä and Lassenius has
shown that work history affects how developers perceive de-
sign defects and that individual developers sometimes have
conflicting opinions of design defects [7]. These results are
more foundational in that, rather than reporting on the ef-
fect of specific tools, they characterize the way software de-
velopers work and think.

For researchers to build foundational results, they should
consider how the context that they study will exist in the
future. For example, when picking a code base to analyze,
the researcher might choose a web application rather than
a desktop application, arguing that the former will become
relatively more prevalent as time goes on.

2.2 Establishing Causes and Effects
In the quest for results that have strong external validity,

many software engineering studies attempt to make their
study contexts as realistic as possible. While the benefits

of realism are clear, the drawbacks are not. One drawback
in doing studies in realistic contexts is that such contexts
make it difficult for the researcher to establish causes and
effects. This difficulty arises because in realistic contexts,
many possible causes may affect a result, making it difficult
to distinguish one cause from another. Since establishing
causes and effects are critical components to building foun-
dational results, it follows that limit or controlled contexts
could yield more impactful results.

For example, consider Green and Petre’s study, which
compared textual programs against visual programs in terms
of comprehensibility [4]. The authors could have opted for a
high degree of external validity by having programmers work
with textual and visual programs in their respective devel-
opment environments to complete a realistic task. Instead,
the researchers asked programmers to compare static screen
images of visual and textual programs. By conducting their
study in this way, the results provide strong evidence that
the representation of the programs were the causes of pro-
grammers’ superior understanding of textual programs over
visual programs. This result can be further investigated and
built upon, which makes this research a foundation for fu-
ture research.

For researchers to establish causes and effects, they should
consider how likely causes and effects can be established,
given a choice of contexts. For example, suppose that you
are conducting a study about the attitudes of managers to-
wards software design tools. When deciding whether to ob-
serve software managers during a week when they are facing
an immediate deadline versus a deadline further into the
future, you might choose to study the latter, because man-
agers may be more focused and reflective during the study’s
interviews.

2.3 Triangulating Results
Most researchers recognize that replication is a good thing,

because it can instill confidence. However, two studies that
reach the same conclusions in the same context give us less
confidence than two studies that use different contexts. This
is because, when different contexts are used, confirmatory
results demonstrate the robustness of the result. For ex-
ample, if you did one study with a small team and another
with a large team, and both studies had the similar findings,
we would have reason to believe that the findings will hold
across team sizes.

For example, Briand and colleagues replicated a previ-
ous study which explored relationships between design mea-
sures – such as that frequency of method invocations pre-
dict fault-proneness – in the context of student projects [1].
In their replication, the authors showed that some of the
relationships held in another context by studying software
developed by professionals. Through their replication, the
authors showed how these relationships hold across develop-
ers’ experience levels.

For researchers to triangulate results when replicating pre-
vious studies, they should consider what aspects of the re-
search context can be varied. For example, rather than per-
forming a literal replication, where the researcher designs
a study to achieve similar results as a previous study, the
researcher could instead perform a theoretical replication,
where the study context is varied so that opposite results
are expected [11]. For example, suppose we are interested
in replicating Dehnadi and Bornat’s study which suggested

256

that a simple test predicts whether or not students will suc-
ceed in an introductory programming class [2]. The theory
is that those students who pass the test have an innate abil-
ity to program. Rather than performing a literal replication,
we could instead vary the context and perform a theoretical
replication; rather than giving the test to a group of stu-
dents who are about to take a programming class, give the
same test instead to a group of students who are about to
take a history class. In this situation, we propose an alterna-
tive theory, that the test simply predicts general academic
ability. If this alternative theory is correct, then the results
of the test should predict how the students perform on the
history test.

2.4 Clarifying the Context
Simply explaining the context in which a study occurs

goes a long way towards creating impactful research. This
is both because a practitioner who wants to decide whether
your research applies to her can compare her software engi-
neering context to the one you describe in your study, and
also because future researchers can make intelligent choices
about how to vary the context in future replicated studies.

As an example of research that clarifies the context of a
study, consider “An Ethnographic Study of Copy and Paste
Programming Practices in OOPL”by Kim and colleagues [5].
This paper, which describes a study that results in a taxon-
omy of copy-and-paste usage patterns, clearly explains that
the results were obtained in the context of object-oriented
programs in small research software.

For researchers to clarify the context of their studies, they
should be explicit about the context when writing up the
study. Often, due to space limitations, this means making
auxiliary material available by means of a URL or a techni-
cal report. Clarifying the context also means not trying to
rationalize away the risks in a study, but accepting them as
they are and encouraging other researchers to exploit them
in future studies. In the long term, we speculate that a more
common standard for how to present and discuss the context
– a vocabulary of research patterns – might help researchers
to more thoroughly understand the context in which a study
was conducted and built upon it in a reliable way.

2.5 Accepting Limited Contexts
The investigation of some phenomena are so intensive that

one either must be willing to accept a limited context, or
must forgo the study altogether. While such studies are nor-
mal in other fields, software engineering is rarely accepting
of limited contexts – and this, we argue, is a mistake.

As an example from another domain, consider Kurtenbach
and Buxton’s study of how users become experts at using
marking menus, a type of menu where items appear around
a circle and the user gestures to select an item [6]. Because
the authors were interested in the effects of learning over
time in a realistic context, they performed their study with
only two users. This limited context allowed them to more
thoroughly analyze the results in detail.

For researchers to accept limited contexts, they should
consider consider whether the research question that they
are trying to answer can be better answered in depth by
using a limited context, rather than more shallowly in a
broader context.

3. CONCLUSIONS
In this position paper, we have argued that software engi-

neering research is sometimes difficult to evaluate in a con-
vincing way. If the community is going to surmount this
difficulty, we argue that we must pay special attention to
the context in which we evaluate. To do so, we believe that
future software engineering research should build a practice
of stating, characterizing, and using context intelligently. If
we ignore context, our research contributions will languish
in isolation and obscurity, but if we embrace it, our research
will flourish and have a significant impact.

4. ACKNOWLEDGEMENTS
Thanks to Thomas Fritz and our anonymous reviewers for

providing comments on early versions of this paper.

5. REFERENCES
[1] L. C. Briand, J. Wüst, and H. Lounis. Replicated case

studies for investigating quality factors in
object-oriented designs. Empirical Software
Engineering, 6(1):11–58, 2001.

[2] S. Dehnadi and R. Bornat. The camel has two humps.
Unpublished, 2006.

[3] E. v. Emden and L. Moonen. Java quality assurance
by detecting code smells. In Proceedings of the Ninth
Working Conference on Reverse Engineering, pages
97–106, Washington, DC, USA, 2002. IEEE Computer
Society.

[4] T. R. G. Green and M. Petre. When visual programs
are harder to read than textual programs. In 6th
European Conference on Cognitive Ergonomics, pages
167–180, 1992.

[5] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in OOPL. In ISESE ’04: Proceedings of the
2004 International Symposium on Empirical Software
Engineering, pages 83–92, Washington, DC, USA,
2004. IEEE Computer Society.

[6] G. Kurtenbach and W. Buxton. User learning and
performance with marking menus. In Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems, pages 258–264, New York, NY,
USA, 1994. ACM.

[7] M. V. Mäntylä and C. Lassenius. Drivers for software
refactoring decisions. In ISESE ’06: Proceedings of the
2006 International Symposium on Empirical Software
Engineering, pages 297–306, New York, 2006. ACM.

[8] M. M. Müller and W. F. Tichy. Case study: Extreme
programming in a university environment. In ICSE
’01: Proceedings of the 23rd International Conference
on Software Engineering, pages 537–544, Los
Alamitos, CA, USA, 2001. IEEE Computer Society.

[9] C. Parnin and C. Görg. Lightweight visualizations for
inspecting code smells. In Proceedings of the 2006
ACM Symposium on Software Visualization, pages
171–172, New York, 2006. ACM.

[10] R. Wettel and M. Lanza. Visually localizing design
problems with disharmony maps. In R. Koschke, C. D.
Hundhausen, and A. Telea, editors, SOFTVIS, pages
155–164. ACM, 2008.

[11] R. K. Yin. Case Study Research : Design and
Methods. SAGE Publications, 1986.

257

