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Convergence: Goal and Success
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● Convergence goals – as a constrained-optimization problem
● maximize(performance-per-$)
● minimize($-to-insight)
● min(operating costs – power, downtime, human_resources)
● max(architected performance * community productivity) <= budget
● min(benchmark-performance) >= Scaling_factor
● max(app-to-app performance variation) <= epsilon

● Posit: Real success of convergence is integrating flexibility with 
heterogeneity
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Convergence: Tale of Two Ecosystems
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Architectural differences

Access policy

Programming models

Languages and tools

Performance

J. Dongarra et al., Exascale computing and Big Data: The next frontier, ACM Communications 2015
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Convergence: Tale of Two Ecosystems
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J. Dongarra et al., Exascale computing and Big Data: The next frontier, ACM Communications 2015

• Hypothetical “best” node
• Sub-Precision
• Fat nodes (lots of RAM)
• ASICs (Training + Inference)
• Persistent node-local storage
• Run-time code optimization

• Hypothetical “best” node
• High-Precision
• Vector extensions
• CPUs/GPUs with High

Bandwidth Memory
• I/O over memory hierarchy
• Static code-optimization

Applicat ion Level Mahout, R and Applications 
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Convergence Requirements: Tale of Two Ecosystems
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Scientific Computing Enterprise Computing
Primarily used for Solving equations Search/Query, Machine learning
Philosophy Send data to compute Send compute to data
Efficiency via Parallelism Distribution
Scaling expectation Strong (scale-up) Weak (scale-out)
Programming model MPI, OpenMP, etc. Map-reduce, SPMD, etc.
Popular languages FORTRAN, C++, Python Java, Scala, Python, R

Design strength Multi-node communication
using an interconnect

Built-in job fault tolerance over
Ethernet

Access model On-premise Cloud-like
Preferred algebra Dense Linear Set-theoretic / Relational
Memory access Predictable Random
Storage Centralized, POSIX/RAID Decentralized, Duplication
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Convergence Requirements: Workflows + Workload
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Scientific Computing Enterprise Computing
Data (Structured) Vector, Matrix, Tensor Table, Key-Values, Objects
Data (Unstructured) Mesh, Images (Physics-based) Documents, Images (Camera)

Visualization Voxel, Surface, Point Clouds Word Cloud, Parallel Coordinates,
BI Tools

Validation Cross-validation (ROC curves,
statistical significance)

Manual / Subject matter expert,
A/B testing

Extract, Transform, Load Fourier, Wavelet, Laplace, etc.
Cartesian, Radial, Toroidal, etc.

File-format transformations
e.g. CSV to VRML

Search (Query) Properties such as periodicity,
self-similarity, anomaly, etc.

SQL, SPARQL, etc.
(Sum, Average, Group by)

Funding Model Non-profit grand challenge
(Answer matters)

Value-driven
(Cost matters)

Sukumar, S. R., et al., (2016, December). Kernels for scalable data analysis in science: Towards an architecture-portable future. In the Proc. Of the 
2016 IEEE International Conference on Big Data, pp. 1026-1031.
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Convergence Requirements: AI Deployment

Scientific Computing Enterprise Computing
Model Domain-specific CNN, RNN, LSTM, GAN etc.

Baseline Theoretic
e.g. Navier Stokes Humans, Other ML algorithms

Parallelism Model, Ensemble Data

Use Case Computational Steering
Proxy models

Speech, Test Image interpretation
Hyper-personalization

Source File System Lustre and GPFS HDFS, S3, NFS etc.

Figure of Merit Interpretability, Feasibility Time-to-accuracy, Model-size

Training Data O(GBs) per sample, O(103)
samples, O(10) categories

O(KBs) per sample, O(106) samples,
O(104) categories

Data Model HDF5, NETCDF Relational, Document, Key-Value
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Convergence: Early Experience @ Cray
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Convergence: Early Experience (Optimism)
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Best practices:
● Application fine-tuning / Performance optimization
● High-performance interconnect
● Algorithmic cleverness to trade compute and i/o
● Overlap compute and i/o with programming model

Graph Analytics Matrix Methods Deep Learning

Handle 1000x bigger datasets with a 
100x better speed-up with queries

Get 2-26x over Big Data Frameworks 
like Hadoop, Spark (for the same 

cluster-size) 
95%+ scalability efficiency that can 

reduce training time from days to hours
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Convergence: Early Experience (Pessimism)
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ResNet-50 Success Time-to-
accuracy

How many 
GPUs? 

Scalability Efficiency

Facebook (Caffe2) 2 days
1 hour

352 GPUs
256

90%
(large-batch)

IBM PowerAI (Caffe) 50 minutes 256 GPUs 95% 
(large-batch)

Google (TensorFlow) ~24 hours 64 TPUs >90%

Preferred Networks
(Chainer)

15 minutes 1000 GPUs >90%

Cray @ CSCS 
(Tensorflow)

<14 minutes 1000 GPUs ~>95%

Tencent < 7 minutes 2048 GPUs Large batch @ 
64K

Fast.ai on AWS
(Cost: $40)

~18 minutes 128 GPUs Not available
(large batch)

Source: Baidu

Source: NVIDIA
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Convergence Future: Cray Shasta System

Vendors Features
Integrated systems Dell, HPE, Cray, Inspur, NVIDIA... Integration, Scaling, Turn-key

Provisioning Bitfusion, Ace, Bright Computing Virtualization, Scheduling

Inter-connect Intel, Cray, Mellanox OPA, Aries, InfiniBand

Node architecture NVIDIA, Facebook, Cray Density, CPU:GPU ratios

Motherboard Quanta, Supermicron etc. PCIe, NCCL, GPU-Direct

xPU Intel, NVDIA, AMD, ARM (40+ startups) CPUs, GPUs, ASICs

Flexibility with 
heterogeneity

Cray storage & analytics 
systems 
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Convergence Future: Technologies

12

Convergence is not all hardware…..

Lot more work before convergence can be productive….

High-level 
Middleware 
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Middleware 
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Middleware 
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Summary: What is in the future?
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● General purpose flexibility 
● Commodity-like configurations with custom processors, chips

● Seamless heterogeneity
● CPUs, GPUs, FPGAs, ASICs

● High-performance interconnects for data centers
● MPI and TCP/IP collectives, compute on the network

● Unified software stack with micro-services
● Programming environment for performance and productivity

● Workflow optimization
● Match growth in compute, model-size and data with I/O
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Thank You
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Convergence: What would it take?
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Component
Performance

Node
Performance

Multi-node
Performance

System
Performance

Facility
Performance

i/o

Hardware Software Ecosystem
System 

Utilization 
Peak vs. Sustained, Performance per$ 

Reliability Scalability 
Faults, MTTF, Uptime Weak and strong 

System Architecture 

Interconnect Provisioning 
eth, lnfiniBand, Aries Meses, Moab, SLURM 

Node Architecture 
# of xPUs+ cache + memory+ network 

Disk Memory xPU 
Latency Capacity, Latency Speed . . 

COMPUTE 

Function 

Application/Codes 
e.g. Deep Learning, Graph analytics 

Kernel/Motif 
e.g. DGEMM, SYRK, ReLU, inner product 

Programming Model 
e.g. MR, PGAS, GRPC 

Libraries Collectives 
e.g. MKL, CUDA, libSci e.g. NCCL, MPI 

Data Structure 
e.g. matrix, sequences, unstructured grids 
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Community Productivity 

Domain-specific Creativity 
Is there an ecosystem of sustainable community 
(open-source) engagement that enables vertical 
segments? 

Code Portability 
Does a user have to rewrite code? Does vendor 
support code porting for novel architectures? 

Programmability 
Does an end-user have to learn a new language or can 
they launch jobs with modern tools (e.g. notebooks)? 

Data Pre-Processing 
Does system offer tools to optimize ETL wall-time? 

Data Movement 
Does system provide ability to run multiple 
frameworks/applications on the same data? 
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