Convergence of HPC and Big Data : Architecture Panel

NITRD Workshop @ Bethesda

Rangan Sukumar, Senior Analytics Architect, Office of the CTO Cray Inc.

COMPUTE | STORE | ANALYZE

Convergence: Goal and Success

• Convergence goals – as a constrained-optimization problem

- maximize(performance-per-\$)
- minimize(\$-to-insight)
- min(operating costs power, downtime, human_resources)
- max(architected performance * community productivity) <= budget
- min(benchmark-performance) >= Scaling_factor
- max(app-to-app performance variation) <= epsilon

 Posit: Real success of convergence is integrating flexibility with heterogeneity

Convergence: Tale of Two Ecosystems

COMPUTE | S1

STORE

Convergence: Tale of Two Ecosystems

COMPUTE

STORE

Convergence Requirements: Tale of Two Ecosystems

	Scientific Computing	Enterprise Computing	
Primarily used for	Solving equations	Search/Query, Machine learning	
Philosophy	Send data to compute	Send compute to data	
Efficiency via	Parallelism	Distribution	
Scaling expectation	Strong (scale-up)	Weak (scale-out)	
Programming model	MPI, OpenMP, etc.	Map-reduce, SPMD, etc.	
Popular languages	FORTRAN, C++, Python	Java, Scala, Python, R	
Design strength	Multi-node communication using an interconnect	Built-in job fault tolerance over Ethernet	
Access model	On-premise	Cloud-like	
Preferred algebra	Dense Linear	Set-theoretic / Relational	
Memory access	Predictable	Random	
Storage	Centralized, POSIX/RAID	Decentralized, Duplication	

STORE

COMPUTE

Convergence Requirements: Workflows + Workload

	Scientific Computing	Enterprise Computing	
Data (Structured)	Vector, Matrix, Tensor	Table, Key-Values, Objects	
Data (Unstructured)	Mesh, Images (Physics-based)	Documents, Images (Camera)	
Visualization	Voxel, Surface, Point Clouds	Word Cloud, Parallel Coordinates, BI Tools	
Validation	Cross-validation (ROC curves, statistical significance)	Manual / Subject matter expert, A/B testing	
Extract, Transform, Load	Fourier, Wavelet, Laplace, etc. Cartesian, Radial, Toroidal, etc.	File-format transformations e.g. CSV to VRML	
Search (Query)	Properties such as periodicity, self-similarity, anomaly, etc.	SQL, SPARQL, etc. (Sum, Average, Group by)	
Funding Model	unding Model Non-profit grand challenge Value-driven (Answer matters) (Cost matters)		

Sukumar, S. R., et al., (2016, December). Kernels for scalable data analysis in science: Towards an architecture-portable future. *In the Proc. Of the 2016 IEEE International Conference on Big Data*, pp. 1026-1031.

COMPUTE

ANALYZE

6

Convergence Requirements: AI Deployment

COMPUTE

	Scientific Computing	Enterprise Computing	
Model	Domain-specific	CNN, RNN, LSTM, GAN etc.	
Baseline	Theoretic e.g. Navier Stokes	Humans, Other ML algorithms	
Parallelism	Model, Ensemble	Data	
Use Case	Computational Steering Proxy models	Speech, Test Image interpretation Hyper-personalization	
Source File System	Lustre and GPFS	HDFS, S3, NFS etc.	
Figure of Merit	Interpretability, Feasibility	Time-to-accuracy, Model-size	
Training Data	O(GBs) per sample, O(10 ³) samples, O(10) categories	O(KBs) per sample, O(10 ⁶) samples, O(10 ⁴) categories	
Data Model	HDF5, NETCDF	Relational, Document, Key-Value	

STORE

Convergence: Early Experience @ Cray

Cray CS-Storm 500NX Dense GPU System

Cray XC-50 Accelerated GPU System

8

COMPUTE

TORE

Convergence: Early Experience (Optimism)

Graph Analytics

Matrix Methods

Handle 1000x bigger datasets with a 100x better speed-up with queries

Get 2-26x over Big Data Frameworks like Hadoop, Spark (for the same cluster-size)

95%+ scalability efficiency that can reduce training time from days to hours

Best practices:

- Application fine-tuning / Performance optimization
- High-performance interconnect
- Algorithmic cleverness to trade compute and i/o
- Overlap compute and i/o with programming model

Deep Learning

Convergence: Early Experience (Pessimism)

Time-to- accuracy	How many GPUs?	Scalability Efficiency
2 days 1 hour	352 GPUs 256	90% (large-batch)
50 minutes	256 GPUs	95% (large-batch)
~24 hours	64 TPUs	>90%
Networks 15 minutes 1000 GPU		>90%
<14 minutes	1000 GPUs	~>95%
< 7 minutes	2048 GPUs	Large batch @ 64K
~18 minutes	128 GPUs	Not available (large batch)
	accuracy2 days1 hour50 minutes~24 hours15 minutes<14 minutes< 7 minutes	accuracyGPUs?2 days352 GPUs1 hour25650 minutes256 GPUs~24 hours64 TPUs15 minutes1000 GPUs<14 minutes1000 GPUs< 7 minutes2048 GPUs

ANALYZE

Training Data Set Size (Log-scale)

COMPUTE

(10)

Convergence Future: Cray Shasta System

NDA

CRAY

Flexibility with heterogeneity

	Vendors	Features
Integrated systems	Dell, HPE, Cray, Inspur, NVIDIA	Integration, Scaling, Turn-key
Provisioning	Bitfusion, Ace, Bright Computing	Virtualization, Scheduling
Inter-connect	Intel, Cray, Mellanox	OPA, Aries, InfiniBand
Node architecture	NVIDIA, Facebook, Cray	Density, CPU:GPU ratios
Motherboard	Quanta, Supermicron etc.	PCIe, NCCL, GPU-Direct
xPU	Intel, NVDIA, AMD, ARM (40+ startups)	CPUs, GPUs, ASICs
	COMPUTE STORE	ANALYZE

Convergence Future: Technologies

Convergence is not all hardware.....

COMPUTE

HBM		memkind			memkind	
GPU MEM		CUDA	CUDA	РТХ	CUDA	
DRAM	C / ASM	C / ASM	С	C / ASM	C / Fortran	
NV-DIMM		pmem	pmem		pmem / pmemkind	pmem / pmemkind
LOCAL SSD					POSIX	POSIX
BURST BUFFER					DSL (e.g Datawarp)	DSL (e.g Datawarp)
Network SSD					POSIX	POSIX
DISK / PFS	POSIX / swap				POSIX / MPI-IO	POSIX
ΤΑΡΕ						TSM
CLOUD						S3
	Operating Systems	Runtimes	Systems Software	Programming Environments	Applications	Workflows

Lot more work before convergence can be productive....

STOR

Summary: What is in the future?

General purpose flexibility

• Commodity-like configurations with custom processors, chips

Seamless heterogeneity

• CPUs, GPUs, FPGAs, ASICs

COMPLITE

- High-performance interconnects for data centers
 - MPI and TCP/IP collectives, compute on the network

Unified software stack with micro-services

• Programming environment for performance and productivity

ANALYZE

Workflow optimization

• Match growth in compute, model-size and data with I/O

13

Thank You

Ś

Convergence: What would it take?

	Hardware	Software	Ecosystem	
	System	Function	Community Productivity	
Facility Performance	Utilization Peak vs. Sustained, Performance per \$	Application/Codes e.g. Deep Learning, Graph analytics	Domain-specific Creativity Is there an ecosystem of sustainable communi (open-source) engagement that enables vertic	
System Performance	ReliabilityScalabilityFaults, MTTF, UptimeWeak and strong	Kernel/Motif e.g. DGEMM, SYRK, ReLU, inner product	Segments?	
Multi-node Performance	System Architecture		Does a user have to rewrite code? Does vendor support code porting for novel architectures?	
Node	Interconnect Provisioning eth, InfiniBand, Aries Mesos, Moab, SLURM	Programming Model e.g. MR, PGAS, GRPC	Programmability Does an end-user have to learn a new language or ca	
Performance	Mance Node Architecture Libraries Collectives # of xPUs+ cache + memory + network e.g. MKL, CUDA, libSci e.g. NCCL, MPI		they launch jobs with modern tools (e.g. notebooks)? Data Pre-Processing Does system offer tools to optimize ETL wall-time?	
Component Performance	Disk Memory xPU Latency Capacity, Latency Speed	Data Structure	Data Movement	
	i/o	e.g. matrix, sequences, unstructured grids	frameworks/applications on the same data?	

COMPUTE

STORE

"Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Networking and Information Technology Research and Development Program."

The Networking and Information Technology Research and Development (NITRD) Program

Mailing Address: NCO/NITRD, 2415 Eisenhower Avenue, Alexandria, VA 22314

Physical Address: 490 L'Enfant Plaza SW, Suite 8001, Washington, DC 20024, USA Tel: 202-459-9674, Fax: 202-459-9673, Email: <u>nco@nitrd.gov</u>, Website: <u>https://www.nitrd.gov</u>

