
Automated Development and Run-time Adaptation of 

Interactive Distributed Applications 

(White Paper) 

B. Cheng, L. Dillon, K. Stirewalt, P. McKinley, S. Kulkarni, and J. Lee 

Software Engineering and Network Systems Laboratory 
Department of Computer Science and Engineering 

Michigan State University 
East Lansing, Michigan 48824 

(http:/ /www.cse.msu.edu/sens) 

October 2001 

Abstract 

In order to provide focus in discussing new techniques and new paradigms for software development, 
we consider a class of applications that is gaining momentum in terms of widespread use, while exhibiting 
safety-critical properties that require rigorous and formal development techniques. Interactive distributed 
applications (IDAs) are those that involve direct interaction with users and whose processing and data 
components are distributed across a network. IDAs exhibit characteristics, such as interactivity, concur­
rency, non-determinism, heterogeneity, and dynamic adaptation, that complicate both their development 
and reasoning about their behaviors. To facilitate develop of quality IDAs various aspects of their con­
struction and maintenance must be automated. This white paper proposes three main thrust areas that 
enable interactive distributed applications to be developed and maintained for fast-changing requirements 
and environments: integrating informal and formal techniques, support for end-to-end development, and 
support for run-time adaptation of software. 

1 



1 Overview 

In order to provide focus in discussing new techniques and new paradigms for software development, we 
consider a class of applications that is gaining momentum in terms of widespread use, while exhibiting 
safety-critical properties that require rigorous and formal development techniques. Interactive distributed 
applications {IDAs) are those that involve direct interaction with users and whose processing and data 
components are distributed across a network. Examples of this increasingly important class of applica­
tions include distributed data management systems, on-board driver /pilot navigation assistance systems, 
computer-supported cooperative work, Web-based distance education, command and control, and a variety 
of public safety services. A requirement of these systems is that they must rapidly incorporate new functional­
ity and accommodate new hardware technologies to forestall becoming obsolete. To develop quality software 
under these circumstances, various aspects of IDA construction and maintenance must be automated. The 
safety-critical nature of these applications and the need for automation motivate the need for formal methods. 
This white paper describes three complementary thrust areas to be addressed in order to rigorously develop 
IDAs and provide support for run-time adaptation: integrating informal and formal techniques, support for 
end-to-end development, and support for run-time adaptation of software. 

Software development is inherently difficult to automate. IDAs exhibit three characteristics that exac­
erbate this difficulty. First, IDAs exploit a combination of new technologies for which rigorous engineering 
models are not yet available. Examples include network services for streaming real-time data across wireless 
networks, middleware and software agent technologies, and language facilities that support secure mobile 
code. Without rigorous models, an automated code generator cannot produce programs that correctly use 
these features, and an automated systems design and analysis tool cannot predict the effect of these features 
on a system under design. Second, IDAs interact with other independent systems, including human users. 
These interactions must be designed explicitly. By nature, this task involves extensive prototyping and 
testing, which are difficult to fully automate. Third, IDAs comprise multiple levels of concurrent, communi­
cating components executing in a distributed environment. Programs that operate in such an environment 
are subject to race conditions, scheduling anomalies, and dynamic environment conditions. Automated 
program analyzers and code generators must deal with this complexity in order to correctly model system 
behavior and produce programs that operate correctly. 

Despite these obstacles, we believe that fundamental advances toward end-to-end automation of IDA 
development can be made if each of the following issues are addressed concurrently. First, the integration of 
different tools must be structured around explicit program representations with formally defined semantics. 
Such formal representations are needed to support behavioral analysis and to enable tracing of design require­
ments from high-level models to low-level code. Second, since programmers usually find formal specifications 
of program behavior difficult to use directly, these formal representations must be derivable from graphical 
modeling techniques with which programmers are already comfortable, and the formal analysis techniques 
must be packaged into easy-to-use tools that consume and produce such graphical models. Third, auto­
mated techniques must support the construction of software that is adaptable at runtime to the changing 
environment. This latter property is increasingly important as computing devices become smaller and more 
mobile. 

The remainder of this white paper is organized as follows. Section 2 describes issues with integrating 
informal and formal approaches to software development. Section 3 discusses end-to-end automation tradeoffs 
and Section 4 discusses run-time adaptation of software. Finally, in Section 5, we briefly describe two projects 
in the Software Engineering Laboratory at Michigan State University that helped shape our thoughts on 
issues discussed in this white paper. 

2 Using Both Informal and Formal Methods 

Recently, many researchers in the software engineering community are looking at integrating informal and 
formal techniques (1, 2, 3, 4]. Like these researchers, we believe techniques that capitalize on both informal 
and formal methods hold great promise for producing fundamental advances in development and maintenance 

2 



of complex software systems. Informal methods are typically graphical in nature and easy to use, but it 
can also be easy for the developer to construct erroneous models since there is no way to rigorously check 
the diagrams. In contrast, formal techniques are well-defined and are amenable to automated analysis, such 
as simulation, syntax and semantics checking, model checking, rewriting techniques, and theorem proving. 
Unfortunately, some formal methods may be difficult to use because the formal specifications may not be 
easy to construct from scratch. Moreover, modifications to the specifications may be difficult to effect. 

We contend that integration of informal techniques and formal techniques can largely overcome the 
disadvantages to each approach and highlight the advantages. Formal specification techniques can enhance 
the application of informal techniques, by providing the mea.ns for rigorously analyzing properties that they 
informally represent. Rigorous analysis can uncover errors that are difficult to spot in reviews of informal 
models, which would otherwise allow errors to propagate to the later stages of development thereby increasing 
the overall development costs. The analysis tools for the formal techniques enable developers to perform 
numerous types of analysis on the informal diagrams that would otherwise not be possible. Examples 
include intra- and inter-model consistency checking, specification verification and validation through the 
use of model checking and simulation techniques, behavior simulation, and rapid prototype development. 
The formal techniques enable developers to explore rigorous and automated design refinement techniques, 
including code generation and test case generation. Formal techniques can reduce the burden currently 
placed on testing. 

We further believe that the benefits of integrating informal and formal techniques are maximized by 
including visual support for formal analysis tools that relate back to the informal notation. Specifically, 
visualization techniques can be used to interpret the analysis results from formal analysis tools in order to 
indicate the source of errors in the original diagrams and convey the errors in alternative, easy to under­
stand formats. Visualizations enable the intricacies of formal specifications to be largely "hidden" from the 
developer, thus allowing for the construction and refinement of system specifications at the informal level, 
while taking advantage of the rigorous analysis capabilities of formal methods. 

3 End-To-End Engineering Tradeoffs 

· Most of the existing research on automating software development focuses on individual steps in the software 
engineering life cycle, such as requirements engineering, design processing, code generation, and so on. 
An important area that has received much less attention is the investigation of end-to-end engineering of 
critical applications. Here, end-to-end refers to the sequence of phases in system development, from early 
requirements analysis and specification down through implementation, testing, and maintenance. We contend 
that there is a substantial class of end-to-end engineering tradeoffs that are poorly understood and that are 
best studied in "vertical" research projects, which span the full software life cycle and involve multiple 
investigators with diverse software-engineering backgrounds (e.g., in object orientation, distributed systems, 
fault tolerance, programming languages, compilers, code generation, testing, etc.). 

Requirements verification, for example, is an end-to-end engineering problem whose tradeoffs are poorly 
understood. A requirement might be verified by one of several means. For example, a developer might 
structure the design and the implementation so that the requirement can be traced through the entire 
development process. Alternatively, a developer might phrase the requirement as a specification in a formal 
language, such as LTL or CTL, and then verify this requirement against a model of the system using model 
checking. Finally, a developer might craft a set of test cases that check adherence to the requirement and 
apply these test cases to the completed application. Obviously, there are many variables in this problem. 
The proper approach to use depends on the nature of the requirement, how it is specified, and other factors, 
such as the composition features available in the implementation language. As systems become increasingly 
complex and integrated, end-to-end development issues become ever more critical. 

Within the general problem of better understanding end-to-end issues and tradeoffs, we believe there are 
two key challenges. First is how best to capitalize on an enormous and continually growing body of reusable 
assets, such as class libraries, reference architectures, and UML rriodels that capture the requirements of a 

3 



"similar" system. Reuse is an end-to-end problem in itself; however, it clearly affects and constrains other 
issues, such as requirements verification. 

Second is how to build up the tool infrastructure to support designers in balancing end-to-end concerns 
and making tradeoffs. Conceptually, the development of a system can be viewed as a series of transformations, 
each of which operates over an artifact in some input language and produces an artifact in some output 
language, which is usually different (and more concrete) than the input language. Each transformation 
involves analyzing the input artifact and generating the output artifact, and a multiplicity of different 
representation languages seems inherent to this problem. In fact, we expect much of the progress in end­
to-end engineering methodologies to incorporate key tradeoffs by tailoring these intermediate languages and 
the corresponding analysis and generatiOI} techniques. One promising approach to enable such tailoring is 
to encapsulate analysis and generation capability into lightweight components that compose seamlessly and 
efficiently within the architecture of larger software-development tool [5]. Here the term lightweight refers to 
two useful properties. First, analysis capabilities are parameterized by representations of the structures to be 

• analyzed; such parameterization enables assembly of analyzers that perform analysis on the same in-memory 
representation of a specification, without translating the representation into another form or invoking an 
external tool. Second, the analysis software is designed for extension and contraction-in the sense suggested 
by Parnas [6]-so that the software can be easily tailored to a particular analysis need during assembly. 

4 Run-Time Adaptation 

The third major area where we believe formal methods will play a larger role in the future is in supporting 
run-time adaptation and reconfiguration of software. The growth of the Internet and the increased presence 
of mobile code has led to important early contributions in related areas, for example, proof-carrying code 
[7] and security models for active networks [8]. However, as computers increasingly pervade many aspects 
of our daily lives and support various infrastructures upon which we rely, there is a need for software to 
adapt its behavior continually to changes in that environment. The need for adaptation arises partly from 
the emergence of a very dynamic and heterogeneous mobile computing infrastructure, and partly from the 
increasing dependence on distributed software for many types of services (financial, defense, and medical) 
for which disruption has serious consequences. 

The research and development communities have addressed some of the issues raised by adaptation in 
middleware, which executes between the application code and the transport services offered by the network. 
An adaptive middleware platform can potentially insulate application components from platform variations 
and changes in network conditions, can support hand off of applications among devices, and can simplify the 
maintenance of security and fault-tolerance invariants. However, many approaches to adaptive middleware 
involve ad hoc techniques that do not allow multiple dimensions of adaptability to be addressed in a unified 
manner. Whereas a given external event can potentially affect several different parts of the middleware (and 
indeed some higher-level functions of an application), such cross-cutting aspects are not expressible in an 
ad hoc framework. Even those middleware projects that take advantage of "principled" approaches, such as 
computational reflection [9], focus primarily on the mechanisms that enable the code to modify its behavior, 
rather than on issues of consistency and correctness of the resulting programs. 

We contend that formal methods can help to support the design and operation of adaptive software 
(middleware, in particular) in three important ways. First, development of a unified model of adaptive 
components may require a shift in programming paradigm that emphasizes encapsulation, rather than in­
heritance. However, the resulting freedom in delaying and re-associating of bindings requires automation 
of run-time checking of both functional and nonfunctional properties of the system. Second, computational 
reflection is a powerful mechanism that enables software to observe its behavior (introspection) and change 
its behavior (intercession). However, a completely open implementation implies that an application can be 
recomposed entirely at run time, potentially altering the functional behavior of the program. We propose 
that the use of reflection be coupled with generative design techniques [10, 11] in order to properly support 
dynamic composition and automated reuse of components. Finally, an adaptive framework should enable 

4 



the application programmer to declaratively specify security, fault-tolerance, and QoS preferences and to 
design applications that adapt to conditions affecting the middleware's ability to satisfy these preferences. 
To achieve this goal requires the development of a specification language that can define adaptive behavior 
and constraints in multiple dimensions, as well as a compiler to generate corresponding application-level 
stubs that make use of adaptive.middleware services. 

We believe that using formal methods to support middleware and other types of adaptive software can 
potentially lead to major improvements in the quality and capabilities of many distributed systems. First, 
a unified model for adaptive components will help application developers evolve existing applications to 
accommodate new technologies in a systematic manner. Second, raising the level of abstraction in the 
design of middleware services will enable developers to more easily incorporate application-specific policies 
and preferences into the middleware and, by insulating the programmer from the details of adaptive mid­
dleware, will speed development and testing. Third, tools that support the definition, composition, and 
reuse of middleware components will enable developers to assess software safety and correctness issues when 
components are modified and interconnected during software evolution. 

5 SENS Projects 

Our thoughts on these issues have been shaped, in part, by two projects in the Software Engineering and 
Networking Systems Laboratory at Michigan State University. First, MERIDIAN (sponsored by NSF Ex­
perimental Partnerships Program) is investigating how to use automated software engineering techniques to 
decrease the time required to develop and maintain IDAs, without sacrificing quality. To validate MERIDIAN, 
we are conducting case studies that instantiate this tool suite over different types of IDAs, using industry­
supplied applications from Motorola, Texas Instruments, NASA/JPL, and Siemens Automotive. Second, 
RAPIDWARE (sponsored by ONR's Critical Infrastructure Protection Program) is developing new tech­
niques for reusable and dependable middleware that includes runtime support for adaptation to the executing 
environment. This project is also being conducted with industrial partners, including Cisco, Lucent, and 
Motorola. Additional infqrmation on research projects being conducted in the Software Engineering and 
Network Systems Laboratory can be found at http: I /www. cse. msu. edu/ sens. 

References 
(1] R. H. Bourdeau and B. H. C. Cheng, "A formal semantics of object models," IEEE 1Tans. on Software Engi­

neering, vol. 21, pp. 799-821, October 1995. 

(2] W. E. McUmber and B. H. C. Cheng, "A general framework for formalizing UML with formal languages," in 
Proc. IEEE International Conf. on Software Engineering (ICSEOJ}, (Toronto, Canada), May 2001. 

(3] J. Lilius and I. P. Paltor, "vUML: a tool for verifying UML models," in Proc. IEEE International Conf. on 
Automated Software Engineering, (Cocoa Beach, FL), October 1999. 

(4] P. Bose, "Automated translation of UML models of architecture for verification and simulation using SPIN," 
in Proc. IEEE International Conf. on Automated Software Engineering, (Cocoa Beach, FL), October 1999. 

[5] R. E. K. Stirewalt and L. K. Dillon, "A component-based approach to building formal analysis tools," in Proc. 
2001 International Conf. on Software Engineering {ICSE'2001}, 2001. 

(6] D. Parnas, "Designing software for ease of extension and contraction," IEEE Trans. of Software Engineering, 
vol. 5, no. 2, 1979. 

(7] G. C. Necula, "Proof-carrying code," in Proc. 24th ACM SIGPLAN-SIGACT Symp. on Principles of Program­
ming Langauges (POPL '97}, (Paris), pp. 106-119, Jan. 1997. 

(8] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden, "A survey of active 
network research," IEEE Communications Magazine, vol. 35, no. 1, pp. 80-86, 1997. 

(9] P. Maes, "Concepts and experiments in computational reflection," 1987. 

(10] D. Batory and S. O'Malley, "The design and implementation of hierarchical software systems with reusable 
components," ACM 1Tans. on Software Engineering and Methodology, vol. 1, pp. 355-398, October 1992. 

(11] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods, Tools, and Applications. Addison-
Wesley, 2000. 5 


