Data Science Initiatives

Reagan Moore
rwmoore@renci.org
University of North Carolina at Chapel Hill

• Data Intensive Cyber Environments Center
 – DataNet Federation Consortium
 – Research Data Alliance

• Renaissance Computing Institute
 – National Consortium for Data Science
 – iRODS Consortium

• School of Information and Library Science
 – LifeTime Library
 – Data science courses
Topics

1. DataNet Federation Consortium: federation across NSF cyber infrastructure projects
2. Progress towards a theory of data science: Basis for quantitative predictions about load and performance (Hao Xu)
3. Development of policies for managing protected data: pluggable rule engine in iRODS (Hao Xu)
4. iRODS Consortium: Industrial storage vendor provisioning of data management - packaging of iRODS with Seagate disk
5. Federation of repositories across federal agencies. Current applications of iRODS include NASA, NOAA, NOAO, and NSF awards.
DataNet Federation Consortium [1]

- University of North Carolina at Chapel Hill
 - Odum Institute - Dataverse (Social Science)
 - Institute for the Environment (Hydrology)
 - Renaissance Computing Institute - GENI (SDN Networks)
 - Data Intensive Cyber Environments Center (Data grids)

- University of California, San Diego
 - Science Observation Network – SciON (Sensor data)
 - Temporal Dynamics of Learning Center (Cognitive science)

- Arizona State University
 - Natural language processing (Computer science)

- University of Arizona
 - The iPlant Collaborative (Plant biology)

- University of Virginia
 - HydroShare (Hydrology)

- Drexel University
 - Semantic ontologies (Engineering)
Federation Mechanisms

• Claim three mechanisms are sufficient for federating existing data management systems

 – Tightly coupled federations
 • Shared name spaces
 – Federated data grids

 – Loosely coupled federations
 • Direct interaction using API of the remote system
 – Encapsulate published APIs in micro-services

 – Asynchronous federations
 • Indirect interaction
 – Communicate through a message bus
Federation of Data & Services

• Move data to remote service
 – Access remote service
 – Move data, apply service, and return results

• Move service to local data
 – Encapsulate service in virtual machine image (Docker)
 – Move service to local storage
 – Execute service as part of a local workflow
Theory of Data Science [2]

• A successful theory should support:
 – Characterization of a data management system through the changes to state information by operations
 – Identification of the assertions (conserved properties) maintained by the data management system
 – Prediction of the probability of success in maintaining the assertions in the presence of failure modes
 – Prediction of the sustainable workload
 – Identification of the assertions maintained across a federation
 – Prediction of the probability of success and sustainable workload of a federation
Required Infrastructure Components

• Policy-based system
 – Computer actionable rules
 – Computer executable procedures

• Persistent state information
 – Identification of the states changed by each operation

• Event tracking
 – For each operation, monitor the state changes
Policy Components - Conceptual Fundamentals
Policy-based Data Management Concept Graph for iRODS
Policy-based Data Management Concept Graph for iRODS

1. **Purpose**
 - Defines Collection
 - SubType: Sharing, Publication, Preservation

2. **Property**
 - Defines Policy

3. **Policy**
 - Has Digital Object
 - Control Updates

4. **Collection**
 - Has Property
 - Has Attribute

5. **Digital Object**
 - Updates Persistent State Information

6. **Attribute**
 - Isa

7. **Community Consensus**

8. **Computer Actionable Implementation**
Policy Components - Conceptual Fundamentals

Policy-based Data Management Concept Graph for iRODS

- Purpose
 - Defines Collection
 - SubType
 - Sharing
 - Publication
 - Preservation
 - Integrity
 - Authenticity
 - Access control
 - Completeness
 - Consensus
 - Correctness
 - Consistency

- Property
 - Defines Policy
 - Isa
 - Replication Policy
 - Checksum Policy
 - Quota Policy
 - Data Type Policy
 - HasFeature
 - Replication Policy
 - Checksum Policy
 - Quota Policy
 - Data Type Policy

- Policy
 - Defines Procedure
 - Controls
 - Updates Persistent State Information
 - Isa
 - Integrity
 - Authenticity
 - Access control

- Procedure
 - Updates Persistent State Information

- Collection
 - Has
 - Digital Object
 - Attribute
 - Isa
 - Digital Object

- Digital Object
 - Isa
 - Attribute

- Attribute
 - Isa
 - Persistent State Information
Policy Components - Conceptual Fundamentals

Policy-based Data Management Concept Graph for iRODS

- Purpose
- Sharing
- Publication
- Preservation
- Integrity
- Authenticity
- Access control
- Completeness
- Correctness
- Consensus
- Consistency
- SubType

Policy Concepts:
- Defines
- HasFeature
- Isa

Collection:
- Defines
- Has

Replication Policy
- Isa
- HasFeature

Checksum Policy
- Isa
- HasFeature

Quota Policy
- Isa
- HasFeature

Data Type Policy
- Isa
- HasFeature

Property
- Defines

Replication Policy
- Isa
- HasFeature

Checksum Policy
- Isa
- HasFeature

Quota Policy
- Isa
- HasFeature

Data Type Policy
- Isa
- HasFeature

Procedure
- Updates
- Isa

Workflow
- Chains
- Isa

Function
- Isa

Operation
- SysChksumDataObj
- GetDataObjRepl
- SetDataType
- SetQuota
- GetUserACL

Attribute
- Isa

Persistent State Information
Policy Components - Conceptual Fundamentals

Policy-based Data Management Concept Graph for iRODS

- **Purpose**
 - Defines
 - SubType: Sharing, Publication, Preservation

- **Property**
 - Defines
 - HasFeature: Completeness, Correctness, Consensus, Consistency

- **Collection**
 - Has
 - Isa: Replication Policy, Checksum Policy, Quota Policy, Data Type Policy
 - Updates

- **Digital Object**
 - Has
 - Isa: Persistent State Information

- **Attribute**
 - Isa: Function, Operation

- **Policy**
 - Defines
 - Isa: Policy Enforcement Point

- **Procedure**
 - Updates
 - Isa: Workflow Chains

- **SubType**
 - Isa: Function, Operation

- **Data ID**
 - Isa: DATA_ID

- **Data Repl Num**
 - Isa: DATA_REPL_NUM

- **Data Checksum**
 - Isa: DATA_CHECKSUM

- **Replication Policy**
 - Isa: IsA

- **Checksum Policy**
 - Isa: IsA

- **Quota Policy**
 - Isa: IsA

- **Data Type Policy**
 - Isa: IsA

- **Consistency**
 - Isa: IsA

- **Integrity**
 - Isa: IsA

- **Authenticity**
 - Isa: IsA

- **Access control**
 - Isa: IsA

- **Sharing**
 - Isa: IsA

- **Publication**
 - Isa: IsA

- **Preservation**
 - Isa: IsA

- **GetUserACL**
 - Isa: IsA

- **SetDataType**
 - Isa: IsA

- **SetQuota**
 - Isa: IsA

- **DataObjRepl**
 - Isa: IsA

- **SysChksumDataObj**
 - Isa: IsA
Data Science

• iRODS provides the required components
 – Operations defined in micro-services
 – State information updated on each operation
 – Policies control execution of the micro-services
 • Pre-process policy
 • Post-process policy

• Needed high performance tracking of events
 – Write rules in C++
 – Send event messages to external index
iRODS Pluggable Architecture

- Interactions with new technologies are encapsulated in plug-ins
 - API
 - Authentication systems (GSI, Kerberos)
 - Databases
 - Micro-services (curl)
 - Network
 - Storage systems (S3, WOS, HPSS)
 - Zonereport
Pluggable Architecture (Coposky)

- Plug-in new micro-services (iRODS 4.0)
 - Associate policy enforcement points with each plug-in
 - Pre-process policy
 - Post-process policy

- Pluggable Rule engine architecture (Hao Xu)
 - Support plug-ins for each rule language
 - iRODS, Python, JavaScript
 - Support meta-rule name spaces
 - Automatically add auditing rules to every micro-service invocation
Pluggable Rule Engine

• Supports 5 basic functions
 – Rule-engine-plugin-start
 – Rule-engine-plugin-stop
 – Rule-exists
 – Rule-execution
 – Callback

• Plugin typically is implemented in 100 lines of code
 – iRODS rule language, Python, Javascript, C++
iRODS Core

Plugin Architecture

RE_Plugin

Any plug-in

Policy Enforcement Point

Meta-Rule

Rules
Rule Name Space

- RE Plugin provides extended namespace support for the translation to the default semantics.
- `pep[...] = ns_{1}\text{preop}(args, env) \gg \ldots ns_{n}\text{preop}(args, env) \gg \text{op}(args, env) \gg \ldots ns_{n}\text{postop}(args, env) \gg \ldots ns_{1}\text{postop}(args, env)`
- By default, we have namespace `ns_{1} = ""`.
- We can add more namespaces. For example, for auditing `ns_{2} = "audit "` or indexing `ns_{3} = "index "` or security.
- For the audit namespace, pre and post file read PEPs:

 `audit_pep_resource_read_pre`
 `audit_pep_resource_read_read_post`
Policy Sets [3]

- Event auditing
- External indexing (events, metadata, text)
- Protected Data management
- Preservation
- Digital Library
- Data sharing
Protected Data

• Automated enforcement of 51 tasks, such as
 – Protected data type detection
 – Access approval flags
 – Encryption
 – Access control setting
 – Replication
 – Retention
 – Audit trail parsing for compliance
 – Verification of required access controls
 – Verification of integrity
 – Password constraints
iRODS User Group Meeting [4]

- iRODS Consortium – membership based sustainable infrastructure
 - Pharmaceutical companies
 - Genomics data grids
 - Storage vendors
 - Data management
 - Example – iRODS appliance integrates disk storage with pre-installed iRODS data grid (Seagate, DDN)
 - Can connect iRODS appliance to any data grid
 - Generalization of SAN technology
Federation [5]

• DataNet Federation Consortium pursuing federation across cyberinfrastructure projects and federal agencies
 – Data Infrastructure Building Blocks
 • GABBS – Geospatial Modeling and Analysis Building Blocks
 • Encapsulated service in Docker image
 – Data grids – NASA, NOAA, NSF, (EPA, NIH, NIEHS, NARA, LoC)
• Service federation
 – Through the Discovery Environment (iPlant) manage data movement and execution of encapsulated service on HPC resource (TACC)
 – Workflow structured objects – track provenance of workflows within iRODS
Virtualization of Data Flows

• Currently virtualize data collections and workflows
 – Manage their properties, access controls, provenance, naming, sharing, organization

• Can also virtualize data flows
 – Integration of Software Defined Networks and Policy-based data management
 – Enables re-execution of data flows, access controls on data flows, sharing, caching, assignment of I/O streams, event tracking, access by collection/file name
Development

• iRODS Consortium
 – iRODS release 4.1.3
 – Pluggable architecture – Jason Coposky

• DICE Center - DFC
 – Workflow structured objects – Arcot Rajasekar
 – Pluggable rule engine – Hao Xu

• RENCI
 – GENI – Shu Huang, Yufeng Xin

• Project support from:
 – NSF DataNet Federation Consortium Grant OCI 0940841
Federation Architecture

REST

Browse

I/O

Library

FUSE

iRODS Data Grid

Message

Bus

Storage

Database

Micro-

service

External

Indexing

Federated Data

Grid

Web

Service

Web

Service