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Overview 

▪ Context: What is a light source, why are the experimental 
feedback loop and data streaming important 

▪ Tomography: Experimental data feedback loop in practice 
▪ Optimizing: Modeling, analysis, and implementation methods 

to understand and improve performance  
▪ Automation: Further steps towards accelerating end-to-end 

experimental data lifecycles 
▪ Publishing: Collecting and organizing light source data  
▪ Futures: Some of the many other things that need to be done 

 



APS is one of four DOE synchrotron light source 

▪ Moves electrons at >99.999999% of the speed of light 

▪ Magnets bend electron trajectories, producing x-rays,  
highly focused onto a small area 

▪ X-rays strike targets in 35 different sectors, with 70 beamlines 

▪ Different types of optics 
and detectors  wide 
range of imaging modalities 

▪ 2014: 22,000 visits, 5,000  
unique users, 5,700  
experiments  
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X-ray source 

brilliance: 

18 orders 

of magnitude 

in 5 decades! 

Computer  

speed: 

12 orders 

of magnitude 

in 6 decades 

X-ray sources 

produce a lot of 

photons, which 

translates to a 

lot of data 
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Light source data rates are growing dramatically 

7 

Source: Francesco 

de Carlo 

(Date: 2014) 
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APS upgrade (APS-U): multi-bend achromat (MBA) lattice will yield 

unprecedented brightness and coherence up to high energies  

Future APS w/ MBA 

NSLS-II Brightness vs.  

x-ray energy at 

top beamlines 

among DOE 

synchrotron 

facilities 
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Major data and computation challenges arise across APS; 

Explode with APS-U 

▪ Huge data from new detectors and from APS-U 
– E.g., XPCS: Today: 2MB images @ 100 Hz; Soon: 1MB images @ 2000 Hz  

(x 10!); Eiger: 2Mbyte @ 3000 Hz (x 3!); APS-U another 2-3 orders of magn. 

▪ Complex, multi-modal data needs advanced 
computation for interpretation 

– E.g., Ptychography+elemental mapping+visual images as a function of 
reaction conditions 

▪ Advanced modeling and theory enable fitting and co-
optimization of model and experiment 

– Goal: Fit one model to all measurements 

▪ New user demographics  automation 
– Scale to more and different users, many with limited/no experience 

▪ New usage modalities requiring computer-in-the-loop control  
– E.g., detect errors or interesting features in data as they are collected 
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A discovery engine for the study of materials 

Diffuse scattering images from Ray Osborn et al., Argonne 

Sample Experimental 
scattering 

Material 
composition 

Simulated 
structure 

Simulated 
scattering 

La 60% 
Sr 40% 

Detect errors 
(secs—mins) 

Knowledge base 
Past experiments; 

simulations; literature; 
expert knowledge 

Select experiments 
(mins—hours) 

Contribute to knowledge base 

Simulations driven by 
experiments (mins—days) 

Knowledge-driven 
decision making 

Evolutionary optimization 



Experimental steering using HPC 

• “Real-time” analysis of streaming experimental data 
• Enables smart experimentation 
• Requires HPC resources 

• Examples 
• Detect features in hierarchical structures 
• Change data acquisition for dynamic systems 
• Minimize damage to dose-sensitive specimens 
• Adjust experimental parameters on the fly 
• Detect errors early in experiments 

Use case: Acquire only enough 
data to meet quality goals 

• Adaptive data acquisition 
• Incremental reconstruction 
• Image quality check (MS-

SSIM similarity scores) 
• Finalize data acquisition 

based on image quality 
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Example: Computing microtomography (CMT) 

Acquisition 

Reconstruction 

2017: 10 Gbps 
2022: 1 Tbps 

2017: 4K×4K×1500×12 bits/s = 36 GB/s 
2025: 20K×20K×8000×20 bits/s = 8 TB/s 



 

Naïve: Collect a continuous set of angles  

• E.g.: Offset = 1;  θs = (0, 1, 2, …, 179) ° 
 

Interleaved:  

• E.g.: Offset = 5;   
θs = (0, 5, 10, …, 175, 1, 6, …, 174, 179, …) 

 

Optimized interleaved: Halve collected 
projection angles after each round 

• E.g.: θs = (0, 90, 45, 135, 22, 67, …, 179) 

 

Reconstructed image of a shale sample with only 30 
streamed projections: (a) fixed angle, offset=1°; (b) 
inter- leaved, offset=5°; (c) optimized interleaved. 
The range of angles is [0,180)°.  
 

Smart online data acquisition strategies  
to minimize time to useful information  
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System parameters:  
• Analysis: window_length, step_size, window_iteration, reconstruction_algorithm 
• Computational resource: # nodes, # threads 
• Controller: scale, back-check (i-k), threshold 
• Data acquisition strategy: naïve, interleaved, optimized interleaved 

Automated stream analysis system 
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Maximum Likelihood Expectation Maximization (MLEM) 

Penalized Maximum Likelihood (PML) 

Stream reconstruction performance on 12-core nodes  
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• Detectors have different data 
generation rates 

• Runtime parameters can be adjusted to 
meet data generation rates 

• MLEM reconstruction performance 
w.r.t. different window length and step 
size values 

• # Nodes = 100 nodes (1,200 cores) 

• Color represents the projection 
consumption rates 

• Max: 204 projections per second (top fig.) 
• Dataset: (180, 100, 1,024) 

• Max: 55 projections per second (bottom fig.) 
• Dataset: (180, 100, 2,048) 

Runtime parameters determine processing rate 

Dataset size: (180, 100, 2,048) 

Dataset size: (180, 100, 1,024) 
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Step size 
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• Quality check between 
reconstructed images 

• Small changes in similarity score 
indicate convergence of values 

• Real-time stream analysis and 
steering can minimize data 
acquisition while meeting data 
quality constraints 

• 22-44% reduction in # collected 
projections  

• Less dose effect, shorter data 
acquisition and analysis, better 
utilization of instruments … 

 

 

Quality cutoffs for experimental steering 
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Understanding and optimizing the end-to-end pipeline 

Context Tomography Optimizing Automation Publishing Futures 

Hundreds of such pipelines may 
be running at the same time, as 
may be many other activities 
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Globus tra nsfe r s. s howing rate (via c olor) a s a func tion of dis t a n ce and volume. 
The 192 1 trans f e r s from aps#c lut ch are highlighte d . 

1015 

1014 .. .. .. 
.. . : 

1013 .. .. . .. 
1012 H a mmond AU 

8 ·o. Br~b04ile-.lttr 
0 I . 0 I ~ 

I 
00 1000 

1011 

.;I 0 0 Pe rth AU · . 0 --. - ~ I .. 
1010 

0 0 0 .. : l I i 0 0 0 
0 0 

~ 
0 J : I 

. 
' 0 1 

Vi 109 o ·. .. =~ I 8 
~ .!!! <l> 8 -s:.. .· . . i CD 

..0 
108 8 o . § ~ ·51 8 ; .. 0 

<l> 2:! 
N 8 0 0 

~ ·v; 
0 0 

0 .._ .._ 
107 0 0 .001 

.!!:! 0 ... 
0 -; -- .!!:! 

Vl 0 I Vl 

c: 0 0 c: 
~ ~ 
t- 106 t-

0 t;_ .. 0 

• 0 

105 ... 0 0 .000001 
0 

0 . : 
: t 104 0 -· • .. 

0 

t 
:, 

e> 
103 0 .... .. 

"o 
... . . . . . ---- t "# ... ....... .... ... ....... . . 

0 ~ ! '0 ~1 
102 . ,. • 1 .. ... .. 

0 -: .. .. .. ... . ·. 
101 :· . ~ 

: . . t . - . •! --. , .. .. ,. ... ... .. . . . .: . . 
10° 

0 5 000 10000 1 5 000 2 0000 
oint (km) 



Data-driven models yield new insights into  
wide area data transfer performance 

Z. Liu, P. Balaprakash, R. Kettimuthu, I. Foster. Explaining Wide Area Data Transfer Performance, HPDC’2017. 

▪ What factors determine wide area data transfer performance?  
Can we predict performance? How can we improve performance? 

▪ We use Globus transfer records to develop machine learning models. A model of heavily 
used network links has median average % error of just 7.8%  

▪ Evidence of the negative impact of high endpoint load is driving new optimizations 
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Gap between 

peak and 

average 

network load 
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GridFTP usage data for top servers 
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Increase average usage by differentiating traffic  
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S. Nickolay, E.-S. Jung, R. Kettimuthu, I. Foster, Bridging the Gap between Peak and Average Loads on 

Science Networks, FGCS 2017. 



RIPPLE: A prototype responsive storage solution 

Transform static data graveyards into active,  
responsive storage devices 

• Automate data management processes and enforce best practices 

• Event-driven: actions are performed in response to data events 

• Users define simple if-trigger-then-action recipes 

• Combine recipes into flows that control end-to-end data 
transformations 

• Passively wait for filesystem events (little overhead) 

• Filesystem agnostic – works on both edge and leadership platforms 
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NU APS 

Beamline 

Local Storage and Compute 

• Quality Control 

• Assign Handle 

AWS Simple Icons: Example 

Beamline 

Instrument • Email / SMS 

notification 

Globus Transfer 

NU CC Compute 

• Feature extraction 

• Aggregate and convert format 

Globus Transfer 

Petrel (ANL) 
• Set sharing ACLs 

• Set timer for publication 

to MDF 

Data publication 

1 

2 

1 

Rules 

2 

• IF new files THEN run quality 

control scripts 

• IF quality is good THEN send 

email and transfer data to NU 

• IF new files THEN run feature 

extraction 

• IF feature detected THEN  transfer 

data to archival storage (Petrel) 

• IF time since ingest > 6 months 

THEN publish dataset to MDF 

NU 

AFM, SEM, 

TEM 

Globus Transfer 

1 

2 

1 

Rules 

• IF new files THEN map elastic modulus 

• IF new elastic modulus map THEN 

register in catalog and extract image 

metadata and move raw and derived 

data to shared Google Drive folder 

Local Storage and 

Compute 

Register Metadata 

UC RCC 

Email or SMS Notification for New Simulation Results 

Check for Updates 

Globus Transfer 

2 

• IF new data in Google Drive THEN fetch 

data from Google Drive and associated 

metadata in catalog 

• IF files and metadata represent an 

elastic modulus map THEN re-run 

simulations and email notification to NU 

PIs 

Catalog 
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RIPPLE recipes 
IFTTT-inspired programming model:  

 

 

 

Triggers describe the event source (filesystem 
create events) and the conditions to match 
(/path/to/monitor/.*.h5) 

Actions describe what service to use (e.g., 
Globus transfer) and arguments for 
processing (source/dest endpoints). 
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RIPPLE Agent 

Triggers: Python Watchdog observers listen for events 

- inotify, etc., for filesystem events (create, delete, etc.) 

- Globus Transfer API for transfer, create, delete events 

Rule evaluation: Performed by cloud-based service 

- Recipes are stored locally in a SQLite database 

- Local filtering then dispatched to AWS Lambda for evaluation 

Actions: Local and cloud-based 

- Docker containers act on local files (metadata extraction, dispatch jobs, etc.) 

- Other tasks on cloud (Globus transfers, create shared endpoints, send emails, 
invoke other Lambda functions etc.) 

 

Ripple Agent 

 
 

 

SQLite 

Filesystem 

Docker, 

PBS, 

SLURM

, 

… 

Process Monitor 

Observers 
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Scenario: Advanced Light Source 
Deployed Ripple on an ALS and NERSC machine to automate data analysis 

• At ALS: Detect new heartbeat beamline data and initiate transfer to NERSC 

• At NERSC: Extract metadata, create sbatch file, dispatch analysis job to 
Edison queue, detect result and transfer back to ALS 

• At ALS: Create a shared endpoint, notify collaborators of result via email 
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Materials Data Facility aggregates and enables 
analysis of materials data and metadata 

• Large quantities of materials data can enable new data-

driven approaches to discovery, but are largely inaccessible 

• MDF provides locus for both automated publication of new 

data and aggregation of metadata from existing collections 

• 200 datasets, 270TB, 1M records aggregated to date; 10x 

more data in the pipeline 

• Integrated schema, APIs, and machine learning methods 

enable programmatic discovery and access 

• Early successes include improved force field potentials 

based on integration of data from multiple sources 

 

Materialsdatafacility.org 

B. Blaiszik, K. Chard, J. Pruyne, I. Foster, The Materials Data Facility: Data 

Services to Advance Materials Science Research, Journal of Materials, 2016. 
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MDF supports publication & discovery 

30 

EP 

EP 

EP 

EP 

Automatic sync 

EP 

Deep indexing 

Query 

Browse 
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Publish 

Databases 

Datasets 

APIs 

etc. 

Distributed data 

storage 

Data 

publication 

service 

Data 

discovery 

service 

Transfer 

Auth 

Publication 

Groups 

Sharing 

Auth 

Search 

Groups 

Transfer 

Context Tomography Optimizing Automation Publishing Futures 



Context Tomography Optimizing Automation Publishing Futures 

Challenges and opportunities 

▪ Create new scientific instruments that link data acquisition and 
computation to measure the previously unmeasurable & 
increase utility of, and access to, expensive resources 

▪ Enable reliable end-to-end streaming applications that span 
from instruments to networks to parallel computer memories 

▪ Integrate pre-experiment and post-experiment activities 

▪ Automation at all levels for throughput, reliability, and economy 

▪ Architect and operate distributed computing systems to support 
varied, often demanding and mission-critical, workloads 



Ensemble 
simulation 

Light source 
beamline 

 
 
 

Online μ-CT 

Online ff-
HEDM 

μ-CT 
data 

Diff. 
data 

Object 

High fidelity  
nf & ff HEDM, 

μ-CT 
 

Reconstruction μ-CT & 
HEDM data 

Region of 
interest for 

zooming 

Initial FE mesh 
Processing 

Compression 

Preprocessing 

Preprocessing 

Calibration 

Initialization 

Dynamic loading 

Material properties 
experimental data 

Validation 

FE 
mesh  

Param 
set 

Param 
set 

Param 
set 

Param 
set 

Param 
set 

Param 
set 

Initial structure 

Full reconstruction 
of experiment 

Validation of 
simulation 

Sensitivity 
analysis 

New scientific 
understanding New experiments 

Registration 
Reconstruction 

Update 

Analysis 

Predicted state 

 
 

Prior info on material’s 

mechanical behavior  
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Bottleneck {3) COii'(IIJie 

0 
0 
0 

(2) Create clrcuitr--------------, 
Tr~'• Orl·demand .. 

{5) M(lve Results & 
Viwaltze 

• Eliminate queue wait-time 
for online analysis 
incentivize batch jobs 

• Eliminate network 
contention - automated 
provisioning of network 

• Eliminate disk 1/0 - stream 
data directly from detector 
to compute memory 



Software 

defined 

networks 

science flows: 

Automated 

provisioning 

of end-to-end 

network paths 
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Simulation to understand and optimize the entire science complex 
• • DoE Super Facility Simulator 
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OOE-FORRESTAL transfer RAW data from LBL to NERSC@ 18.01 
OOE-NNSA transfer RAW data from BNL to LBL @ 18.01 

ANL starts processing task 6 from ANL @ 18.010 
transfer RAW data from ORNL to ANL @ 18.02 
ANL starts processing task 6 from LBL@ 18.330 
transfer RAW data from ORNL to ANL @ 19.01 
transfer RAW data from LBL to LBL @ 19.01 
LBL starts processing task 15 from LBL@ 19.010 
transfer RAW data from BNL to NERSC @ 20.01 
transfer RAW data from BNL to ORNL @ 20.02 
ANL starts processing task 12 from BNL@ 20.960 
transfer RAW data from LBL to LBL@ 21.01 
transfer RAW data from BNL to ORNL@ 21.01 
LBL starts processing task 26 from LBL@ 21.010 
ORNL starts processing task 24 from ANL @ 21.050 
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For more information 

 

www.globus.org 

labs.globus.org 

foster@anl.gov 
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