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Objectives

0 Middleware Caching optimizations
0 Application oriented benchmark kernels
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Typical Software Layers for I/O in HI

-
@
-

O Based on a lot of current
apps
0o High-Level
m E.g., NetCDF, HDF, ABC
m Applications use these
o Mid-level
= E.g., MPI-1O
= Performance experience
O Low Level
m E.g., File Systems
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User application

Access patterns: shared files, individual files, data partitioning, check-
pointing, data structures, inter-data relationship

DF5 | | pnetCDF

MPI-10

side file system

de file system

torage system

Data types (byte-alignment), data structures (flexible dimensionality),
hierarchical data model

Collectives, independents
I/0 hints: access style (read_once, write_mostly, sequential, random, ...),
collective buffering, chunking, striping

Caching, fault tolerance, read-ahead, write-behind, I/O load
balance, wide-area, heterogeneous FS support, thread-safe

Open mode (O_RDONLY, O_WRONLY, O_SYNC), file status, locking,

flushing, cache invalidation

Machine dependent: data shipping, sparse access, double buffering
application-aware caching, pre-fetching, file grouping, “vector
of bytes”, flexible caching control, object-based data
alignment, memory-file layout mapping, more control over
hardware, Shared file descriptors,

Read-ahead, write-behind, metadata management, file striping, security,
redundancy

Group locks, flexible locking control, scalable metadata
management, zero-copying, QoS, Shared file descriptors,
Access base on : file blocks, objects Scheduling, aggregation

Active storage: data filtering,object-based/hierarchical
storage management, indexing, mining, power-management
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Middleware Caching: Direct Access
Cache System (DAChe)

O Main Idea: Runtime Cache in user
space to capture small, irregular

accesses
o Portable e
O 4 main subsystems DAChe Interface
1/0 interface and protocol — Mgmt Eaoina

Cache Management
Look-up management
Locking Subsystem
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Example Design & Implementation

O Global cache metadata management
= A file is logically divided into blocks
= Metadata of blocks are distributed across all MPI clients
= Block-based file locking is used for consistency control

O Local cache page management
= At most one copy of file data can be cached at any time
= Handling local/remote requests to locally cached data
= Page eviction is based on local reference entirely
= Page migration is triggered by global metadata reference
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Read Example
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[Hustrative Perftormance Evaluation

0o Platforms

m Tungsten, a Linux cluster @ NCSA
o Lustre parallel file system

m Mercury, an IBM Linux cluster @ NCSA
o GPES parallel file system

o MPICH
m Caching added at ADIO layer
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BTIO

Local array is in 4D
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o 1I/0 amount:

Class B (1023) is 1.6 GB
Class C (1623) is 6.5 GB
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O Block tri-diagonal array partitioning
o writes followed by reads
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Aligning +Caching Illustration

BTIO:102x102x102 on Lustre
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