Scalable 1I/0 Middleware and File System
Optimizations for High-Performance

Computing
I I

Alok Choudhary, Professor

Director: Center for Ultra-Scale Computing
and Security

Dept. of Electrical & Computer Engineering
And Kellogg School of Management
Northwestern University

Collaborators: Prof. M. Kandemir (Penn State) and Dr. R. Thakur (ANL)

Objectives

0 Middleware Caching optimizations
0 Application oriented benchmark kernels

August 21, 2006 @ANC HECIWG 2

Typical Software Layers for I/O in HI

-
@
-

O Based on a lot of current
apps
0o High-Level
m E.g., NetCDF, HDF, ABC
m Applications use these
o Mid-level
= E.g., MPI-1O
= Performance experience
O Low Level
m E.g., File Systems

m Critical for performance in
above

End-to-End Performance critical

Applications

Compute node

Compute | | Compute
node node

Compute

node

A

\4

A A

\4 \4

A

\4

Parallel netCDF/HDF/..

A A

\4 A4

switch
network
A
1/0 1/0 1/0
Server Server Server

SR el

August 21, 2006

@ANC

HECIWG 3

User application

Access patterns: shared files, individual files, data partitioning, check-
pointing, data structures, inter-data relationship

DF5 | | pnetCDF

MPI-10

side file system

de file system

torage system

Data types (byte-alignment), data structures (flexible dimensionality),
hierarchical data model

Collectives, independents
I/0 hints: access style (read_once, write_mostly, sequential, random, ...),
collective buffering, chunking, striping

Caching, fault tolerance, read-ahead, write-behind, I/O load
balance, wide-area, heterogeneous FS support, thread-safe

Open mode (O_RDONLY, O_WRONLY, O_SYNC), file status, locking,

flushing, cache invalidation

Machine dependent: data shipping, sparse access, double buffering
application-aware caching, pre-fetching, file grouping, “vector
of bytes”, flexible caching control, object-based data
alignment, memory-file layout mapping, more control over
hardware, Shared file descriptors,

Read-ahead, write-behind, metadata management, file striping, security,
redundancy

Group locks, flexible locking control, scalable metadata
management, zero-copying, QoS, Shared file descriptors,
Access base on : file blocks, objects Scheduling, aggregation

Active storage: data filtering,object-based/hierarchical
storage management, indexing, mining, power-management

August 21, 2006

@ANC HECIWG 4

Middleware Caching: Direct Access
Cache System (DAChe)

O Main Idea: Runtime Cache in user
space to capture small, irregular

accesses
o Portable e
O 4 main subsystems DAChe Interface
1/0 interface and protocol — Mgmt Eaoina

Cache Management
Look-up management
Locking Subsystem

August 21, 2006 @ANC HECIWG 5

Example Design & Implementation

O Global cache metadata management
= A file is logically divided into blocks
= Metadata of blocks are distributed across all MPI clients
= Block-based file locking is used for consistency control

O Local cache page management
= At most one copy of file data can be cached at any time
= Handling local/remote requests to locally cached data
= Page eviction is based on local reference entirely
= Page migration is triggered by global metadata reference

August 21, 2006 @ANC HECIWG 6

Read Example

— Metadata

Logical partitioning view of a file

communication

......... — Cache data

block 0 | block 1

block 2 Melfs/e @l block 4

_________ communication

S
. . X
Distributed metadata S
PO PL &
block O status block 1 status L? plock 2 status
block 4 status block 5 status SQJ block 6 status
block 8 status block 9 status block 10 status

Cache pages at compute nodes

ey System call

Po P1 P3
local memory local memory Yocal » local memory
page 1 page 1 page 1
page 2 page 2 page 2
page 3 page 3 page 3

@ANC HECIWG 7

[Hustrative Perftormance Evaluation

0o Platforms

m Tungsten, a Linux cluster @ NCSA
o Lustre parallel file system

m Mercury, an IBM Linux cluster @ NCSA
o GPES parallel file system

o MPICH
m Caching added at ADIO layer

August 21, 2006 @ANC HECIWG 8

BTIO

Local array is in 4D

P20

1/0 bandwidth in MB/s

File view,

P2,

nS

1/0 bandwidth in MB/s

BTIO: 102x102x102 on Lustre

400
350 1 l\.\
300 \./l\-
250 1
200 1
150 —e—native | |
—s—caching
100
50 1
>~ <& Av\g\’
0 T .
16 25 36 49 64
Number of compute nodes
BTIO: 102x102x102 on GPFS
500
450 1
400 1
350 1
300
250 —e—native [
200 Y S —#—cachingl—
150 A
100 A
50
0

16 25 36 49 64

Number of compute nodes

o 1I/0 amount:

Class B (1023) is 1.6 GB
Class C (1623) is 6.5 GB

1/0 bandwidth in MB/s

1/0 bandwidth in MB/s

BTIO: 162x162x162 on Lustre

500
450 1 /\I/.\
400 \.
350 A /
300 +
250 1
200 —e—native [
150 —m—caching —
100 A
50
0 T T T T
16 25 36 49 64
Number of compute nodes
BTIO: 162x162x162 on GPFS
700
600
c00 | ./'\.———l——-l
400 -
300 /\o—o\
200 —e—native | |
100 —s—caching| |
0

16 25 36 49 64

Number of compute nodes

O Block tri-diagonal array partitioning
o writes followed by reads

August 21, 2006

@ANC

HECIWG 9

Aligning +Caching Illustration

BTIO:102x102x102 on Lustre

August 21,

1/0 bandwidth in MB/s

1/0 bandwidth in MB/s

400
350
300
250
200
150
100

50

600

500

400

300

200

100

—e— native —— native+FDalign
caching —>— caching+FDalign
16 25 36 49 64
Number of compute nodes
BTIO: 102x102x102 on GPFS
—e— native —#— pative+FDalign

16

caching

25 36 49
Number of compute nodes

—>— cache+FDalign

64

1/0 bandwidth in MB/s

1/0 bandwidth in MB/s

BTIO: 162x162x162 on Lustre

—&— native —— native+FDalign
600 caching —>— caching+FDalign
500
400
300
200
100
0
16 25 36 49 64
Number of compute nodes
BTIO: 162x162x162 on GPFS
—e— native —#— native+FDalign
caching —>— cache+FDalign
800
700
600
400
300
200
100
0]
16 25 36 49 64
Number of compute nodes {ECIWG 10

