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• Utility model
• Pay for only what you use
• No infrastructure build-up cost and/or 

database administration costs

• Elastic 
• Use as much  as your needs (virtually 

limitless)

• No system management 
headaches
• Failure, loss of data, software 

upgrades, patches, bug fixes 

• Cost amortization
• Cheaper due to economy of scale
• Better control over IT investment

Cloud Computing

Public Cloud
Elastic, pay-as-you-go 

servicePrivate
Existing servers or data centers

Hybrid 
Utilize both public & private
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• Data resides in shared systems 
administration of which is not in owners' 
control

• Unknown applications and processes share 
resources with apps and data.

• Data owners have no control over the 
cloudʼs internal data security personnel, 
policies or their enforcement
• Insider attacks
• Data mining attacks leading to information 

leakage
• Cloud providers compliance to government 

subpoenas

Key Challenge: Loss of Control

End Users

Public Cloud
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Adversarial Cloud Model

• Honest-but-Curious versus Malicious adversary
• Honest-but curious

• Executes protocols correctly, but wishes to learn about data
• Malicious

• Might sabotage data or computation

• Passive versus Active Adversary
• Passive

• Makes inferences based on passive observations – ciphertext, 
queries, workload, and access patterns

• Active
• May actively inject new data, execute queries, or interfere with the 

execution
4



What is The Solution?

Encrypt sensitive data before uploading to the cloud
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Encrypt sensitive data before uploading to the cloud 



Secure Computing
Download the encrypted data and compute at the trusted side

Cryptographic Solutions at the Cloud Exploiting Trusted Computing

Trusted Private Cloud Untrusted  Public Cloud

Download encrypted data

Upload encrypted data

Encrypted dataCleartext data The DB owner Secure hardwareCleartext data processing Cleartext results

Encrypted query

l~y~T w 

Trusted Private Cloud Untrusted Public Cloud Trusted Private Cloud Untrusted Public Cloud 

Download enc ted results Download encr ted results 

Upload encrypted query Upload encrypted query 
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Data Processing over 
Encrypted Data
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Executing SQL over Outsourced Encrypted Data

• Encrypting Relational Data 
• Store cipher-indices in the form of additional columns in relations

• Processing SQL queries over encrypted relations
• Compute as much as possible over encrypted domain using cipher-indices (encrypted query 

processing) 
• Transfer intermediate results to client, decrypt and execute rest of the query at the client. 

(partitioned execution) 
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User

Encrypted User 
Database

Query

Encrypted User Data Store Encrypted Data

Retrieve Data

ProcessEncrypted Results

(Possibly Superset)

Decrypt and Filter Results

NAME SALARY

John 54500

Mary 111029

James 95300

Lisa 145000

E-tuple CI(Col1) CI(Col1) CI(Col2)

fErf!$Q!! bd6e7c3d b6ff744e 47f7f7bc

F%%3w& f2b5779e d2c2c9bf 95353e03

&%gfsdf$ 0b61216e 6c590cbf f96c32bc

%%33w& 8b10b689 0469bf41 fd8058df

Hacigumus, Iyer, Li, Mehrotra, Executing SQL over encrypted data… SIGMOD 2002 



Homomorphic Encryption

• Fully homomorphic approach
• Very inefficient and not practical 

• Partially homomorphic
• Additive: e.g., Paillers
• Multiplicative: e.g., Elgamal

• Searchable encryption
• Enables comparisons in ciphertext without decryption



Common Attacks

• An adversary may learn about data:
• From ciphertext  (ciphertext representation-based attack, e.g., order of values) 

• From prior knowledge of data distribution (frequency-count attack) 

• From knowledge of frequency of queries (workload-skew attack)

• From the size of the output to a query (output-size attack)

• From the access pattern used by the mechanism in answering a query (access-
pattern attack)

• From knowledge of queries that have executed  (search-pattern attack)

Mix with adversarial background knowledge        Reveal secured data
10
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Encrypted Data Processing  over the Years
• Encryption-based Techniques

• Bucketization [Hore et al. VLDB 04]
• Searchable Encryption [Song et al., IEEE SP 00]
• Secure indexes – encrypted Bloom filters [Goh, 03]
• Bilinear maps [Boneh et al., EuroCrypt 03]
• Order-Preserving Encryption (OPE) [Agrawal et al., SIGMOD 04]
• Modular-OPE  [Boldyreva et al., CRYPTO 11]
• Conjunctive keyword search [Golle et al., ACNS 04]
• Encrypted inverted lists [Curtmola et al., CCS 06]
• Fully homomorphic encryption [Gentry, STOC 09]
• Onion encryption [Popa et al., SOSP 11]
• Dynamic Searchable Encryption [Cash et al.NDSS 14]
• PBTree [Li et al., VLDB 14]
• IBTree [Li et al., ICDE 17]

• Secret-Sharing Techniques
• Shamir’s secret-sharing [Shamir, CACM 79]
• Multi-Linear Secret-Sharing Schemes [Brickell et al., J. of Cryptology 91, Bertilsson et al., AUSCRYPT 92]
• Verifiable secret sharing [Rabin et al., STOC 89]
• Proactive Secret Sharing [Herzberg et al., CRYPTO 95]
• Function Secret Sharing [Boyle et al., EUROCRYPT 15]
• Homomorphic secret sharing [Boyle et al. CRYPTO 16]
• Accumulating Automata [Dolev et al., TCS 19]
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MPC and Secret Shared Mechanisms

Untrusted Public Clouds

Users

• Techniques:
• Secret-sharing [Shamir, CACM, 1979]
• Distributed Point Function [Gilboa et al., EUROCRYPT, 

2014.]
• Function secret-sharing [Boyle et al., EUROCRYPT, 2015] 
• Homomorphic Secret-Sharing [Boyle et al.,  CCS, 2017]
• Accumulating-Automata [Dolev et al, SCC@ASIACCS , 

2014]
• OBSCURE [Gupta et al, CS@UCI, 2019]
• Conclave [Volgushev et al. arxiv, 2019] 
• SMCQL [Bater et al., PVLDB, 2017]

• Systems: 
• Jana by Galois
• Partisia
• PULSAR by Stealth Software Technologies
• Secret Double Octopus and SecretSkyDB Ltd
• Sharemind by Cybernetica
• Unbound Tech.

Se
cre

t-s
hared data

Secret-shared data

Secret-Shared Data

Cleartext data

The DB ownerThe DB owner

Secret-Shared processing

Trusted Private 
Cloud
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MPC and Secret Shared Mechanisms

Untrusted Public Clouds

Users

• Techniques:
• Secret-sharing [Shamir, CACM, 1979]
• Distributed Point Function [Gilboa et al., EUROCRYPT, 

2014.]
• Function secret-sharing [Boyle et al., EUROCRYPT, 2015] 
• Homomorphic Secret-Sharing [Boyle et al.,  CCS, 2017]
• Accumulating-Automata [Dolev et al, SCC@ASIACCS , 

2014]
• Obscure [Gupta et al, CS@UCI, 2019]
• Conclave [Volgushev et al. arxiv, 2019] 
• SMCQL [Bater et al., PVLDB, 2017]

• Systems: 
• Jana by Galois
• Partisia
• PULSAR by Stealth Software Technologies
• Secret Double Octopus and SecretSkyDB Ltd
• Sharemind by Cybernetica
• Unbound Tech.

Se
cre

t-s
hared data

Secret-shared data

Secret-Shared Data

Cleartext data

The DB ownerThe DB owner

Secret-Shared processing

Trusted Private 
Cloud • Secure against stronger adversaries

• Information-theoretically secure
• Secure against access-pattern-based attacks

• However, much more expensive
• 5-6 order of magnitude expensive compared 

to plain text processing
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Cryptographic Solution Landscape
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(cloud/client)

Untrustworthiness
Confidentiality

Efficiency

•Large number of solutions 
– Represent points in the spectrum of possibilities

• Explore different tradeoffs
• Efficiency – overhead, indexable?
• Generality - What queries can the technique 

support – selection, range, join, aggregation
• Dynamic Operations - Does the scheme support 

insertion/deletions/updates?
• Client-Side Execution - How much work does the 

client have to do? During insertion/ updates/ 
queries.

• Security - How much security does the scheme 
offer? Quantifiable leakage, e.g., orderability, 
distribution?  Semantic security? 



Exploiting Trusted Computing 
Platforms

Secure hardware
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Enclaves

• Applications can protect their 
secrets

• TCB is small
• Intel CPU
• App code itself

• Protected from malicious
• BIOS
• SMM
• Hypervisor
• Kernel

• Familiar application 
environment
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SGX Enclaves

• Trusted execution environment embedded in the process
• It’s own code and data
• Controlled entry points
• Multi-threading

• Confidentiality

• Integrity
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User 
Process 

Enclave 

I I 

Enclave Enclave 
Code Data 

Enclave Kernel 

User-memory Kernel-memory 



Executing SQL using Trusted Hardware

• Secure hardware at the cloud acts as a trusted agent of the data provider 

• Queries executed collaboratively between trusted hardware and the untrusted server

• Secure FPGA-based solutions (e.g.,  Microsoft Cipherbase)

• Intel SGX-based solutions (e.g., Opaque, EnclaveDB, VC3, HardIDX)
21

User

Encrypted User 
Database

Query

Encrypted User Data Store Encrypted Data

Retrieve Data

ProcessDecrypt Results

NAME SALARY

John 54500

Mary 111029

James 95300

Lisa 145000

E-tuple CI(Col1) CI(Col1) CI(Col2)

fErf!$Q!! bd6e7c3d b6ff744e 47f7f7bc

F%%3w& f2b5779e d2c2c9bf 95353e03

&%gfsdf$ 0b61216e 6c590cbf f96c32bc

%%33w& 8b10b689 0469bf41 fd8058df

Decrypt/process

reecrypt



• Enters and exits are expensive
• EEXIT 3,330 cycles
• EENTER 3,800 cycles
• Intel SDK adds another 800 cycles
• Normal syscall is 250 cycles

• Memory is encrypted

• Limited physical memory
• 128MB (in practice only 90MB available for your application)
• 40,000 cycles per enclave page cache (EPC) fault (25K driver, 7K exit/entry, 8K 

indirect)

• 10-33X slowdown for simple key-value stores

Performance

22
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Security
• Powerful Adversarial Model -- OS + VMM
• Controlled execution environment
• Control over page faults
• Suspending execution

• Single stepping
• Flushing caches
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Abstract 
Protected module architectures such as Intel SGX hold the 
promise of protecting sensitive computations from a poten­
tia lly compromised operating system. Recent research con­
vincingly demonstra ted, however, that SGX's strengthened 
adver sary model also gives rise to to a new class of powerful, 
low -noise side-channel attacks leveraging first-rate control 
over hardware. These attacks commonly rely on frequent 
enclave preemptions to obtain fine-grained side-channel ob­
servations. A maximal temporal resolution is achieved w hen 
the victim state is measured after every instruction. Current 
state-of-the-art enclave execution control schemes, however, 
do not generally achieve such instruction-level granularity. 

This paper presents SGX-Step, an open-source Linux ker­
nel framework that allows an untrusted host process to 
configure APIC timer interrupts and track p age table en­
tries directly from user space. We contribute and evaluate 
an improved approach to single-step enclaved execution at 
instruction-level granularity, and we sh ow how SGX-Ste p en ­
ables several new or improved attacks. Finally, we discuss its 

concerns, the past years have seen a significant research ef­
fort (3, 6, 9] on Protected Module Architectures (PMAs) that 
support isolated execution of security-sensitive application 
components or enclaves w ith a minimal Trusted Computing 
Base (TCB). These proposals have in common that they en­
force security primitives directly in hardware, or in a small 
hypervisor, so as to prevent the untrusted OS from access­
ing enclaved code or data directly, while still leaving it in 
charge of shared platform resources such as system memory 
or CPU time. With the arrival oflntel' s Software Guard ex­
tensions (SGX) [ 6, 7], such strong hardware-enforced trusted 
computing guarantees are now available on mainstream con­
sumer devices. 

Recent research demonstrated, however, that the increased 
capabilities of a privileged PMA attacker allow her to con­
struct high-resolution, low-noise channels to spy on enclaved 
execution. Specifically, the pas t months have seen a steady 
stream of kernel-level SGX attacks exploiting information 
leakage from page tables (1 3, 15] , CPU caches (4, 10], or 
branch prediction units [8]. These attacks commonly exploit 

OS Kernel 

VMM 
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• Every architectural component of the CPU
• Branch target buffers

• S. Lee et al., “Inferring fine-grained control flow inside SGX enclaves with branch shadowing,” in USENIX Security, 2017
• G. Chen et al., “SgxPectre attacks: Stealing intel secrets from SGX enclaves via speculative execution,” arXiv preprint, 2018.                                                                                                              

• Pattern-history table
• D. O'Keeffe et al., "Spectre attack against SGX enclave," 2018                                                                                            

• Caches
• Brasser et al.,  "Software  grand  exposure:  SGX  cache  attacks  are practical," in WOOT, 2017
• J. Gotzfried et al., "Cache attacks on Intel SGX," in EuroSec, 2017
• A. Moghimi et al., "Cachezoom: How SGX amplifies the power of cache attacks," in CHES, 2017
• M. Hahnel et al., "High-resolution side channels for untrusted operating systems," in USENIX ATC, 2017
• M.  Schwarz et al.,  "Malware  guard  extension:  Using  SGX  to conceal cache attacks," in DIMVA, 2017                      

• DRAM row buffer
• W.  Wang et al.,  "Leaky  cauldron  on  the  dark  land: Understanding memory side-channel hazards in SGX," in CCS, 2017 

• Page-tables
• W. Wang et al., “Leaky cauldron on the dark land: Understanding memory side-channel hazards in SGX,” in CCS, 2017
• J. Van Bulck et al., “Telling your secrets without page faults: stealthy page table-based attacks on enclaved execution,” in USENIX, 

2017
• Page-fault exception handlers

• Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015
• S. Shinde and other, “Preventing page faults from telling your secrets,” in CCS, 2016

• Speculative execution
• J. V. Bulck et al., “Foreshadow: Extracting the keys to the Intel SGX kingdom with transient out-of-order execution,” in USENIX, 2018

Side-Channel Attacks
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• JPEG
• Process 8x8 blocks
• Function fits on one page

• Cannot reason about input-
dependent page-faults

• Can reason about number of 
page-faults
• Optimizations in the code take 

shortcuts

Example: Recovering JPEG Images

25Reference: Y. Xu et al., “Controlled-channel attacks: Deterministic side channels for untrusted operating systems,” 2015

GLOBAL (void ) jpeg_ idct_ islow ( j _ decompress_ptr cinfo , 
jpeg_ component_info * comppt r , JCOEFPTR coef_block , 
JSAMPARRAY output_ buf , JDIMENSION output_ col ) 

I* Pass 1: process columns from input . . . *I 
i nptr = coef_ block ; 
quantptr = ( ISLOW_ MULT_ TYPE * ) compptr->dct_ table ; 
wsptr = workspace ; 
for (ctr= DCTSIZE ; ctr> 0 ; ctr-- ) 

I* Due to quantization , we will usually find that 
* many of the input coefficients are zero , 
* especially the AC terms . We can exploit this 
* by short-circuiting the IDCT calculation for any 
* column in which all the AC terms are zero . In 
* that case each output is equal to the DC 
* coefficient (with scale factor as needed) . With 
* typical images and quantization tables , half or 
* more of the column OCT calculations can be 
* simplified this way . 
*I 

if (inptr [DCTSIZE*l] ==0 && inptr[DCTSIZE*2]==0 && 
inptr [DCTSIZE*3]==0 && inptr[DCTSIZE*4]==0 && 
inptr [DCTSIZE*5]==0 && inptr[DCTSIZE*6]==0 && 
inptr [DCTSIZE*7]==0 ) { 

I* AC terms all zero *I 
... SIMPLE COMPUTATION ... 
i nptr++ ; quantptr++ ; wsptr++ ; 
continue ; 

... COMPLEX COMPUTATION ... 
inptr++ ; quantptr++ ; wsptr++ ; 
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Today, SGX does not offer much security….. 

Research to protect against vulnerabilities ongoing

Some problems will be fixed in hardware – cache, branch prediction

Some problems are too hard to fix completely – will result in unacceptable overheads
(e.g., enclave memory access patterns) 

Original Recovered Original Recovered 

-



• Despite 20 years of progress in cryptography, secure hardware, and  
secure data processing.

Bottomline
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Computation Cost & Security

• Cryptographic Overheads:
• Searchable encryption – ~2 orders of magnitude 
• Secure hardware - ~3-4 order of magnitude
• MPC based solution - ~5-6 orders of magnitude

Selecting 8 rows from TPC-H LineItem table of 1M rows and 7 columns
(orderkey, linestatus, quantity, partkey, suppkey, linenumber, returnflag)
(8 core 3.5 GHz 32 GB machine)
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Security Threats

represents technique is resilient to a given attack.

Resilient to attacks 
Techniques Data at rest During query execution

Ciphertext 
indistinguishability

Output-
Size 

Workload-skew Access-patterns

Full Download
Deterministic Encryption/OPE X X X X
Non-Deterministic Encryption X X X

Searchable encryption X X X
Homomorphic + ORAM X X
Shamir’s Secret-sharing X X

Multi-party computations-Jana X X

Reference: Sharad Mehrotra, Shantanu Sharma, and Jeffrey D. Ullman. "Scaling Cryptographic Techniques by Exploiting Data Sensitivity at a Public Cloud." In Proceedings of the Ninth ACM Conference on Data 
and Application Security and Privacy, pp. 165-167. ACM, 2019. 29
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That has not stopped the industry or academia …
• Encryption-based Systems

• CryptDB [Popa et al., SOSP 11]
• Monomi [Tu et al.. VLDB 13]
• Cipherbase [Arasu et al., CIDR 13]
• TrustedDB [Bajaj et al., IEEE TKDE 13]
• CorrectDB [Bajaj et al., VLDB 13]
• ZeroDB [Egorov et al., arxiv 16]
• MrCrypt [Tetali et al., OOPSLA 13]
• EncKB [Yuan et al., ASIACCS 17]
• Microsoft Always Encrypted
• Oracle 12c
• Amazon Aurora
• MariaDB

Industrial/startup 
systems

Academic/industrial papers
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• Secret-Sharing-based Systems
• SSSDB [Avni et al., ALGOCLOUD 15]
• Splinter [Wang et al., NSDI 17]
• OBSCURE [Gupta et al, VLDB 19]
• Cybernetica
• Jana by Galois Inc. 
• Partisia
• Secret Double Octopus
• SecretSkyDB Ltd
• PULSAR by Stealth Software Technologies Inc.
• Unbound Tech.

a testimony to importance of problem

• • 



Can we design an outsourcing solution for that is 
simultaneously??

Efficient – significantly better compared to downloading 
cryptographically secured data, and 
Secure – similar to downloading the data and local processing

Key Question…

Partition computation
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§ Traditionally, secure data processing considers a world to be binary…
§ Either all data needs to be protected, or 
§ No data needs protection

§ In contrast, the real-world might be a lot grayer….
• Organization data is often only partially sensitive

• Sensitivity dictated by policies 
• Why pay cryptographic overheads to strongly protect all the data, when only a small 

portion needs to be protected?
• Commercial systems (e.g., Jana by Galois Inc.) are beginning to explore such  solutions

§ Work on understanding the security and performance implications of using 
multiple cryptographic techniques simultaneously is just beginning.

A Way forward …right sizing the solution to the problem
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"Any opinions, findings, conclusions or recommendations 
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