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ABSTRACT
Modern software is increasingly ubiquitous, commoditized, and
(dynamically) configurable. Moreover, such software often must
be able to operate in a varied set of heterogeneous environments.
Because this software can behave very differently in different en-
vironments and configurations, it is difficult to assess his quality
purely in-house, outside the actual time and context in which the
software executes. Consequently, developers are often unaware of
how their systems actually behave in the field and how their main-
tenance activities affect such behavior, as shown by the countless
number of incidents experienced by users because of untested be-
haviors. On the bright side, the complexity of today’s computing
infrastructure and of modern software also provides software engi-
neers with new opportunities to address these problems. The abil-
ity to collect field data—data on the runtime behavior of deployed
programs—can provide developers with unprecedented insight into
the behavior of their deployed systems. We believe that the collec-
tion and analysis of field data can provide disruptive advances in the
state of the art in software engineering. In this paper, we discuss
our vision and a research agenda that can help fulfill such vision.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Algorithms, Experimentation, Reliability

Keywords
Testing deployed software, field data, runtime behavior

1. INTRODUCTION
Quality-assurance activities, such as software testing and analy-

sis, are notoriously difficult, expensive, and time-consuming. As a
result, software products are typically released with faults or miss-
ing functionality. The characteristics of today’s software are mak-
ing the situation even worse. Modern software systems are increas-
ingly ubiquitous, commoditized, and configurable. Moreover, these
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systems are often built through aggregation of third-party compo-
nents, the set of interacting components can vary widely (e.g., in
the case of the increasingly popular service-oriented architectures),
and the nature of the interactions among components can be highly
dynamic. Finally, the environments in which such systems must
operate are often rich and heterogeneous. More generally, software
complexity is growing, together with the complexity of the envi-
ronments in which software executes.

Because this software can behave very differently in different
environments and configurations, it is extremely difficult to assess
qualities such as performance, reliability, and security outside the
actual time and context in which the software executes. Develop-
ers’ traditional approaches to system understanding and validation
were developed decades ago, for a different kind of software. Such
software assessments—performed by a relatively small group of
experts, in-house, on their own computing platforms, using input
workloads they generated—can still provide useful information,
but are frequently inadequate for today’s systems. Consequently,
developers are often unaware of how their systems actually behave
and perform in the field and how their maintenance activities affect
such behavior and performance. In fact, the examples of incidents
experienced by users because of untested behaviors (e.g., due to
configuration problems and unforeseen interactions) are countless.
We experienced this problem directly, when an analysis tool devel-
oped at Georgia Tech was consistently crashing for one of its users.
After investigating the issue, we found that the problem was due to
the use of the tool on a specific combination of versions of the Java
Virtual Machine and of the Solaris Operating Systems [20]. Al-
though this problem could have been discovered through in-house
testing, such a discovery would have required the testers to exercise
the software in that specific configuration.

If the complexity of today’s computing infrastructure and of mod-
ern software introduces new problems for software engineers, how-
ever, it also provides new opportunities that may help in addressing
these problems, if suitably leveraged. In particular, many of today’s
software systems are deployed in a large number of similar (when
not identical) instances, used by a multitude of users, and executed
on powerful computers that are mostly interconnected. This situa-
tion provides a unique chance for developers to collect field data,
that is, data about the runtime behavior of deployed programs col-
lected by monitoring the programs while they are in use.

Field data can provide developers with unprecedented insight
into the behavior of their deployed systems, which can help them in
a number of quality assurance activities. In fact, in recent years, we
have seen an increasing interest in this topic from both researchers
and practitioners; and the development of techniques that collect
data from deployed applications to support in-house software en-
gineering tasks is an increasingly active and successful area of re-
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search (e.g., [4, 5, 8, 14, 21, 23]). These existing approaches are a
promising beginning, but we believe that they just scratch the sur-
face of the possibilities offered by field data.

Our vision is that further research in this area can help lever-
age the untapped potential of field data by going way beyond the
state of the art and giving developers the ability to answer richer
questions about the users’ experience with their software. For ex-
ample, we envision developers being able to investigate the follow-
ing issues: what bugs users are experiencing most frequently and
in what system, platforms, and library combinations they are oc-
curring; what are the possible reasons for a given observed field
failure or misbehavior; whether a test suite is exercising the code in
the same way the users are exercising it and, if not, how to improve
such test suite; whether some subsets of users are experiencing poor
performance; which users would be affected by a given modifica-
tion in the code and how; and how to recreate in the lab failures
experienced by the users.

In short, on the one hand, software engineers face a situation in
which traditional in-house quality-assurance techniques are often
ineffective due to their inability to cover the spectrum of behaviors
manifested by software systems after deployment. On the other
hand, the ability to leverage field data and resources promises not
only to produce a new set of approaches, techniques, and tools that
overcome the limitation of the state of the art, but also to help solv-
ing new problems that it was not possible to address before.

2. OVERALL VISION
It is generally recognized that executions in the field can mani-

fest a quite different behavior than in-house executions, especially
for software that can operate in different configurations and envi-
ronments. In previous work, for instance, we provided concrete
evidence of this difference in behavior while experimenting with a
technique that leveraged field data to perform impact analysis and
regression testing [19]. Being able to capture, analyze, and un-
derstand these behavioral differences could greatly benefit many
quality-assurance tasks. In this context, the overarching vision that
we propose in this paper is a paradigm shift that will transform
software testing and analysis in activities performed throughout the
lifetime of the software to improve it based on the way it is used.

Figure 1 provides a high-level depiction of this vision. Software
producers who want to perform a quality-assurance task on their
previously-released software perform an augmented version of the
in-house task that leverages field data. A tool supporting the task
communicates to remote agents on the user sites a set of data col-
lection directives for the task at hand. When users run the software,
they transparently run a version instrumented by the remote agent’s
instrumenter, which adds probes to the code for producing runtime
data. These data are then processed by appropriate runtime moni-
tors, and the resulting processed data is stored in a remote reposi-
tory for later use by a module that implements the remote task (i.e.,
a part of the task that can be performed on the user platforms).
Depending on the task performed and the data collected, the re-
mote task may send back field data to the software producer’s local
repository and/or provide new data-collection directives to the in-
strumenter. Finally, the software producer leverages the collected
field data to perform the in-house task and evolve the software un-
der analysis based on the results of the task.

Note that this is just an intuitive and simplified representation
that is meant to be general enough to encompass different solu-
tions. It does not imply that the software under analysis resides on
a single machine, nor that instrumentation will necessarily be used
to collect field data. In fact, this overall vision represents a general
scenario that can be instantiated in many different ways.

3. RESEARCH AGENDA
In this section we discuss a set of research directions that can

help fulfill the vision presented in the previous section. They are
mainly intended as a starting point for further discussion, rather
than a comprehensive list.

Recording user executions in the field. Two of the main
limitations of in-house testing and analysis are that fielded behav-
iors are difficult to foresee (when testing) and to reproduce (when
debugging). Researchers have tried to overcome these issues by
collecting and using partial information about program executions
(e.g., [14, 20]). Collecting such information can help, but devel-
opers often discover what they need to observe during a program
execution only incrementally. Ideally, we would like to be able to
faithfully record and later reproduce at will user executions (or rel-
evant parts of them). Although some research has been performed
in this direction (e.g., [12, 13, 18, 24]), most existing approaches
are either too computationally expensive to be used in the field or
require a specialized hardware or OS. Overall, most existing ap-
proaches still have a long way to go before they can be used on-
line on real user executions. Further research and novel approaches
(e.g., approaches that leverage hardware mechanisms and virtual
machines to perform efficient record replay [1]) could help bridge
this gap and make these techniques practically viable.

Post-mortem dynamic analysis of field executions. If
practical record replay techniques were available, developers could
perform various kinds of dynamic analyses while replaying real
user executions. Consider, for instance, memory error detection
tools such as Valgrind’s Memcheck [15]. These tools are used very
successfully in-house to identify memory problems, but may miss
problems that occur only in some specific configuration or for some
specific runs. Unfortunately, the overhead imposed by these run-
time memory-checking tools is too high for them to be usable on
deployed software. However, they could be run on recorded user
executions by leveraging free cycles on the user machines and al-
low for discovering memory issues that actually occur in the field
and may affect the users. The results of the analysis could then
be sent to the developers, and aggregated across user sites (e.g., to
rank the problems found based on how widespread they are and the
number of users they potentially affect).

Debugging of deployed applications. Imagine the common
case of a program deployed in a large number of similar instances,
used by a multitude of users, and executed on powerful computers
that are mostly interconnected. Imagine now to be able to parti-
tion the program in subsystems and assign the recording of each
subsystem to one or more user sites. In such a scenario, when a
failure (e.g., a crash, an exception, the violation of an assertion)
occurs at a given site in a subsystem that is being recorded at that
site, the corresponding execution could be saved for later analysis.
The recorded execution could then be sent to the developers, who
would use it for traditional debugging. Although being able to de-
bug failing user executions this way would be extremely useful in
itself, we could try to go even further. Specifically, we could de-
fine (semi) automated debugging techniques that can be performed
remotely, on the sites where the applications fail and send back to
developers only relevant information about the potential faults.

User based regression testing. Recorded user executions
could also be used to support and enhance testing during program
evolution. A typical way to perform regression testing is to keep a
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Figure 1: Overall vision.

regression test suite and rerun it on the changed program. The ef-
fectiveness of regression testing, like the effectiveness of testing in
general, highly depends on how well the used test suite represents
the way the program is used in the field. Unfortunately, regression
test suites often exercise the application in a very different way than
the actual users [19], which may result in unforeseen differences
in behavior between old and new versions and, ultimately, dissat-
isfied users. Record-replay techniques could alleviate this prob-
lem by generating regression test cases based on user executions.
These test cases would have the advantage of testing the software
exactly in the way it is used in the field. In addition, subsystem and
unit test cases could be extracted from these complete executions
to have a set of faster and more focused test cases that would be
more amenable to regression testing [7, 12].

Classifying program outcomes. When analyzing the dynamic
behavior of deployed software, one fundamental aspect that is of-
ten overlooked is the ability to classify such behavior. For instance,
it would not be possible to perform debugging without knowing
when an execution fails or misbehaves. Many of the techniques that
collect field data (e.g., [14,22]) sidestep this problem by simply fo-
cusing on program crashes or analogous obvious failure manifesta-
tions. In practice, however, many failures do not result in a system
crash, but rather in a wrong or anomalous outcome. Furthermore,
passing and failing are not the only outcomes of interest for a soft-
ware system. For a program that may fail in different ways, for in-
stance, it would be useful to be able to classify an execution based
on the kind of failure it manifests, rather than just classifying it as
failing. In other cases, the outcome of interest may have nothing to
do with a failure and could be, for example, the performance of the
software. In general, many tasks would benefit from the ability of
automatically classifying executions according to a given behavior
of interest.

Predicting program outcomes. An even more ambitious goal
than classifying user executions would be to build models of the be-
havior of the software that are good enough to allow for predicting

likely program outcomes. Such a capability could also greatly ben-
efit a range of techniques. For instance, techniques for self adap-
tation and repair could leverage behavior prediction information to
reconfigure a system when its performance is likely to decay or
implement some corrective action when the software is likely to
malfunction. This is a challenging research area that has triggered
the interest of many researchers, who developed early solutions to
subsets of the problem, or to related problems, using some form of
machine learning (e.g., [9, 10, 26]). (The general idea behind these
techniques is to train the learners on a set of executions whose char-
acteristics are known and then use the learners to classify unknown
executions.) Despite the existence of these techniques, many issues
are still open, including the problems of how to get reliable training
data, how to use the learning models online without affecting the
user experience, and how to handle the difficult problem of false
positives.

Efficient data collection. No matter what kind of field data
gets collected, the amount of data collected can make an approach
impractical. In some cases, the information collected is large (e.g.,
program traces). In other cases, the data may be compact, but the
number of sites from which it is collected may be large. In the worst
case, both situations may occur. There are some good solutions to
this problem that are based on sampling (e.g., [14]), but there are
types of data—and techniques that rely on such data—for which
sampling is not appropriate (e.g., data used for path-sensitive anal-
yses that may need to observe multiple elements, unknown a priori,
along a path). For these cases, researchers should investigate differ-
ent techniques to reduce the amount of data gathered and study the
tradeoffs between amount of information collected and accuracy of
the results. This is another crucial problem that must be solved to
make techniques that leverage field data practically viable.

Multi-version data collection. Most data-collection techniques
work only on single versions. The inability to handle data com-
ing from multiple versions effectively (i.e., without keeping a sepa-
rate database for each version) can considerably limit the effective-
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ness of analyses performed on this data. Therefore, one relevant
research avenue involves the definition of ways in which data com-
ing from different versions can be used together, at least in part,
and analysis results computed for an earlier version do not need to
be recomputed from scratch when a new version is deployed. Note
that this is a more general problem, which is present also when the
supporting data is collected in house and not in the field. However,
it becomes considerably more relevant in this context, in which the
collection of data is more problematic.

Improving testing suites based on real usage. The typi-
cal way in which test suites are developed is that an initial version
is built before the first release. Then, when users report problems
with the software, the test suite is extended to include the relevant,
and previously ignored, cases revealed by the users. Developers
could improve this process by collecting data on the way a pro-
gram is actually used in the field and leveraging this data to (1) as-
sess whether an existing test suite is representative of actual usage
and (2) modify it accordingly. These techniques could go from sim-
ple collection and comparison of coverage information [21] to very
sophisticated statistical analysis of various program spectra. Being
able to perform this type of early steering of test suites could help
discover potential issues before they occur on the user machines,
with obvious advantages for both users and developers.

Ensuring user privacy and security. Although techniques
that collect field data to support in-house software engineering tasks
represent an increasingly active area of research, privacy and secu-
rity concerns have prevented widespread adoption of many of these
techniques and limited their usefulness. One way to address this is-
sue is to limit the kind and amount of data collected. Typical exam-
ples of this approach are crash reporting systems (e.g., [2, 16, 17]),
which collect information about stack traces, registry values, and
environment at the time of a crash. Although this information can
be useful to correlate different failures and perform a first investiga-
tion, it is often too limited. In fact, recent research has shown that
the effectiveness of techniques that relies on field data increases
when they can leverage more and more detailed information, such
as complete execution recordings [1,5] or path profiles [4,11]. Un-
fortunately, this kind of detailed information is bound to contain
sensitive data that users would likely be unwilling to share. There-
fore, in order for techniques that leverage field data to become
widely adopted and achieve their full potential, new approaches for
addressing privacy and security concerns must be developed.

One possible way to address this issue would be to use privacy-
preserving techniques for anonymizing field data. These techniques
have been used successfully on databases [25] and may be tailored
to work in this context. Another alternative would be to perform
most of the analysis of field data on the user machines, and collect
only the final results of the analysis. For some analyses, such as the
memory leak detection technique that we described above, the in-
formation collected would be highly unlikely to reveal confidential
information. Finally, one specific solution to the privacy problem,
in the context of execution recording techniques, is to anonymize
the inputs of recorded user execution so that they (1) are as differ-
ent as possible from the ones used by the user, and (2) reproduce
the same behavior as the original execution (e.g., [3, 6]).

Development of a general support infrastructure. Build-
ing an environment such as the one depicted in Figure 1 will require
the development of support tools and infrastructure. Moreover,
ideally, these tools and infrastructure should be developed so that
they are generic enough to support future techniques with differ-

ent data collection and analysis requirements. Although this task
may appear as mostly an engineering effort, this is not necessar-
ily the case. Based on our experience—and on the experience of
other researchers and collaborators—we believe that building such
an infrastructure will involve a number of new and difficult systems
issue and the investigation of new, non-trivial solutions. This is es-
pecially true if the goal is to create tools and infrastructure that are
designed to be adaptable and extensible, so that they can benefit the
broader research community.

Web applications. Although field data collection and analysis
are applicable in general, there is a golden opportunity that we can
exploit in the case of web applications. Because of their nature,
web applications simplify dramatically some of the issues that we
listed above. For example, it is almost straightforward to replay the
server side of a web applications, as most of its inputs are logged.
Also, the code on the client side of a web application generally
gets reloaded every time the user (re)opens the page containing that
code. It is therefore simple not only to update the instrumentation
in an application, but also to provide different instrumented ver-
sions (or even different versions altogether) to different users. This
aspect in particular can open the door to advanced techniques that
were not conceivable before, such as techniques that perform re-
gression testing by pre-releasing a new version, transparently, to a
small subset of users and collect information on the performance of
that version to guide a broader distribution. For these reasons, web
applications are an ideal target for the techniques discussed in this
paper.

4. CONCLUSION
We believe that the collection and analysis of field data—runtime

data about deployed software—can enable a disruptive leap for-
ward in software testing and analysis research and practice. Al-
though there is considerable interest in this area, both in the re-
search community and among practitioners, existing approaches
are still preliminary and fail to achieve the full potential of tech-
niques that leverage field data. In this paper, we presented our vi-
sion and a research agenda that can help fulfill this vision.
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