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Data challenges consume large portion of customer AI/Analytics budgets
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overnight”

Felix Naumann

Hasso Platner Institute
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Profile metadata = Statistics + informational summaries about dataset hygiene & quality 
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✗ Piecemeal metadata insights

✗ Iterative process

✗ Labor & time intensive

Industry Practice

Dataset 

Metadata from  
SAMPLED Dataset

Cleansing …

Apply to Full Dataset

Prepared Dataset

✓ Complete metadata insights

✓ Eliminates iterations

✓ 60-80% productivity increase

XtremeData’s Transformative Solution

Dataset 

Metadata from 
FULL Dataset

Cleansing …

Prepared Dataset
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Full dataset profiling: SQL-enabled, fast, scalable …

Column level profiling, including schema inferencing

Rich metadata: data quality, patterns, ranks, MCVs …

Uniform structure for profile results: easily exported, or queried for discovery, curation …

Unparalleled Simplicity

PROFILE FROM data table INTO prof_table 



XtremeData: Engine to Generate Full Fidelity Metadata

Records1 Dataset Time (sec) 2 Cost3

2B 0.53TB 331 $2.43

4B 1.06TB 635 $4.67

8B 2.1TB 1285 $9.45

16B 4.2TB 2609 $19.18

Unparalleled Price-Performance

1 81 columns (all varchar 64)    2 System: 6x c5.9xlarge (AWS)    3 Cost: AWS Compute + XtremeData
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Full dataset profiling: SQL-enabled, fast, scalable …

Column level profiling, including schema inferencing

Rich metadata: data quality, patterns, ranks, MCVs …

Uniform structure for profile results: easily exported, or queried for discovery, curation …

Unparalleled Simplicity

Enables enterprises to 

generate complete 

metadata from data at-

rest & in-motion

PROFILE FROM data table 
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INTO prof_ table ~---1 
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PROFILE SUMMARY

Column Name
Suggested Data Type
Total Row Count
Number of Rows with DB Null as Value
Number of Rows with Blanks
Number of Rows with One or More ‘0’ Values
Minimum String Length for Column Data Values
Maximum String Length for Column Data Values
Average String Length for Column Data Values
Number of Unique or Distinct Values
HLL Estimated Number of Unique or Distinct Values
Minimum Value as a Text String
Maximum Value as a Text String
Minimum Value when Typed Only for Numbers
Maximum Value when Typed Only for Number
Average Value when Typed Only for Numbers
Standard Deviation Only for Numbers
Number of Minimum/Maximum Values for RANK
Number of Top N Values for TOPN
Number of Histo Values for HISTO
Number of Pattern Values for PATTERNS
Estimated Skew for Column Data Values
Note: How Likely Type was Determined
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Full Dataset Profiling (FDP)

-----+ 

> ~TREM EDATA" -



Compelling Customer ROI

32

Use in a typical enterprise

multitude of data pipelines
ETL, Integration, Preparation, Analytics, 

Migration, Machine Learning, more

1000s of data workers
Data Architects, Developers, Engineers, 

Scientists, Analysts, Excel-users, more

Full Dataset Profiling (FDP)

-----+ 

> ~TREM EDATA" 
~ 



Compelling Customer ROI

33

Use in a typical enterprise

multitude of data pipelines
ETL, Integration, Preparation, Analytics, 

Migration, Machine Learning, more

Reference Data, Data Quality, Data 

Privacy, Compliance, Audit, more
many applications

1000s of data workers
Data Architects, Developers, Engineers, 

Scientists, Analysts, Excel-users, more

Full Dataset Profiling (FDP)

-----+ 

> ~TREM EDATA" 
~ 

~ 



Compelling Customer ROI

34

Few dollars in FDP provide data & 

insights that can save tens of thousands

30% reduction in data wrangling for a small team 

of 4 @ $75/hour/employee saves $180K per year

Use in a typical enterprise

multitude of data pipelines
ETL, Integration, Preparation, Analytics, 

Migration, Machine Learning, more

Reference Data, Data Quality, Data 

Privacy, Compliance, Audit, more
many applications

1000s of data workers
Data Architects, Developers, Engineers, 

Scientists, Analysts, Excel-users, more

Full Dataset Profiling (FDP)

-----+ 

> ~TREM EDATA" 
~ 

~ 



Compelling Customer ROI

Customer with 1000 data workers @ 

$100m ($100k/worker) & FDP1 @ $105k

Modest 15% productivity gain: $15M

Potential ROI: >140x

1 System: 8x c3.8xlarge (AWS) + XtremeData, running 12 hours x 5 days x 52 weeks
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Output 

Files
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Metadata insights in data pipelines

• Inline data quality + data transparency = trust

• Intelligent pipelines (detect change/drift …)
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• ~50 files/table

• 5 tables

• 3.3 billion records
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Wire protocol compatible with PostgreSQL

MPP extensions optionalMeta-data

Engine

Data

Single instance, peer-to-peer:

• Natively parallel: across & within data nodes

• Hybrid row & columnar processing

• Modern columnar, optimal auto-compression

• Micro optimized, multi-threaded, JIT ….

Client Client

Head

Distributed Processing SQL Engine

Architecture

Performance not dependent on data co-location

No secondary structures (indexes, zone maps ..)

Planner/optimizer with runtime plan refinement

Dynamic load balancing

Dynamic skew detection and handling

Decoupled compute & data storage

Scale up & out



 

 

"Any opinions, findings, conclusions or recommendations 

expressed in this material are those of the author(s) and do not 

necessarily reflect the views of the Networking and Information 

Technology Research and Development Program." 

 

 

The Networking and Information Technology Research and Development 

(NITRD) Program 

Mailing Address: NCO/NITRD, 2415 Eisenhower Avenue, Alexandria, VA 22314 

 Physical Address: 490 L'Enfant Plaza SW, Suite 8001, Washington, DC 20024, USA Tel: 202-459-9674, 

Fax: 202-459-9673, Email: nco@nitrd.gov, Website: https://www.nitrd.gov 

 

 

NITRD 
~ 

mailto:nco@nitrd.gov
https://www.nitrd.gov/

