
Return to the Language Forrest: the Case for DSL Oriented
Software Engineering

András Vajda
Ericsson Software Research, Finland

andras.vajda@ericsson.com

Johan Eker
Ericsson Research, Sweden

johan.eker@ericsson.com

ABSTRACT
In this position paper we argue for a radical departure from
today’s approach to software engineering, centered on target-
specific tools and general processes such as modeling and agile
practices. The old principle of right tool for each problem shall be
applied to software engineering as well: to address ever higher
complexity, we need to raise dramatically the level of abstraction;
as general solutions all largely failed, we need to focus on
problem domain specific approaches. Instead of focusing on the
platform paradigm (von Neumann and derived architectures), we
need to focus on each of the problem domains, by creating a
language or modeling environment specific to each domain that
can be used by domain experts with very limited software or
hardware competence, while putting the platform mapping in the
target-specific compiler, developed by platform experts. This
approach to software engineering will require a new approach to
ways of working as well as research into new technologies.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifications –
specialized application languages, very high level languages.

D.2.2 [Software Engineering]: Design Tools and Techniques –
programmer workbench.

General Terms
Design, Languages, Theory.

Keywords
Domain specific languages, software engineering methods.

1. INTRODUCTION: STATE OF THE
PROBLEM
There have always been two dimensions to software development:
one was the platform (HW and OS) dimension and the other was
the problem domain dimension. For most of the past fifty years,
software engineering focused almost exclusively on the first one,
creating languages that allowed description of programs in a way

that was easily translated to Neumann types of (sequential)
machines. The problem domain, whatever it was, had to be
squeezed into this paradigm.

During the 80s it became painfully clear that this approach is a
big bottleneck, so the community attempted to raise the
abstraction for available high level assembler languages (C,
Fortran etc), pushing these towards more genericity and
somewhat higher level of abstraction (e.g. object orientation),
while leaving some of the obvious tasks for the tool/run-time
system domain to handle. The underlying assumption remained
though the same: follow the platform – any attempt to raise
abstraction level in general led to inefficiency when deployed on
HW.

While this fixed some of the issues around actually writing code,
the rift between domain knowledge and platform knowledge
remained wide open – which led to the invention of UML, agile
ways of working etc. These methods masked some of the
discrepancies but didn’t fix the real problem, as the community
hit the same wall: generic, high level of abstraction meant
inefficient code and the issue of communication between domain
and platform experts was still not fully resolved. Graphics were
just aiding understanding – shortening getting up to speed times –
but weren’t giving the order of magnitude boost that was hoped
for.

Another important development recently was the emergence of
multi-core systems, as the hardware industry’s solution for
increasing the performance of processors. Software engineering
for single core systems is dominated by the imperative style,
which quickly becomes the bottleneck when moving applications
to multi-core processors: parallelism in programs written in
imperative style is always explicit and achieved by means of
threads and processes, defined and carefully implemented by the
programmer; any potential for automatic parallelization is
prevented by the very tools used to implement the algorithms. The
control over low-level detail, once considered a merit, tends to
over-specify programs: not only the algorithms are specified, but
also how inherently parallel computations are sequenced. Hence
we believe successful utilization of many-core hardware will
require new paradigms, tools and languages. In [5] the authors
explicitly state that speed-up of legacy software should not even
be a measure of success for research on parallel computing. What
would constitute success, is tools that would help us build
applications that scale with the available parallelism on the target
system and that are portable between various target systems.

2. DOMAIN SPECIFIC APPROACH
The key insight of the past few years was that while generic, high
abstraction level, Neumann-paradigm focused design leads to
inefficiency in deployed code and does not really bridge the gap

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.

389

between domain expertise and programming expertise, there may
be a middle way that could mitigate these tensions: what cannot
be solved in generic terms, becomes much simpler if you narrow
the domain down so that the range of choices is greatly reduced.

Therefore, we believe the community shall focus on specific,
limited, well-defined domains (for example, DSP programming,
communication stack development etc), create a
language/modeling environment / infrastructure that allows
domain experts to express what the software shall do (not how)
and then focus on making the transformation within this limited,
well-defined domain to efficient software executable on Neumann
architectures automatic. The key is being restricted to a well
defined domain: efficient automatic transformations become
possible and the result is an eco-system where you design in the
domain level – what, not how: possible by domain experts – and
then can generate efficient target code through specific, limited,
targeted transformations (created by platform experts). Figure 1
illustrates this flow on a high level.

Domain Expert Platform Experts

1: define concepts and constructs of the domain

2a: define domain specific
language / modeling
environment
(DSL/DSM)

3: use the DSL/DSM to
create domain specific
systems

2b: create compilers
for the DSL/DSM and

each target
environment

4: Use target specific
compiler to create target-

efficient system from domain-
specific system

Domain specific expertise Platform specific expertise

Figure 1 Relationship between domain and platform specific

engineering

3. LANGUAGE AND COMPILER LINES
The fundamental principle we promote is the right domain
specific tool for each problem, instead of some universal tool
coupled with a way of working that tries to wrap it so that it
becomes usable in various contexts. The primary meta-tool we
promote is usage of high level, strictly domain specific languages,
based on formal concepts used and widely understood by domain
experts who may have limited or no software engineering
knowledge.
By ways of example, consider chess: there’s a very well defined
language to describe moves well understood by any chess player,
but hardly usable to describe e-g. the architecture of a building.
Since the language is well defined, it’s easy to create a translation
of it into e.g. displaying moves on a monitor, instructing a robot
to make the right moves etc. How this is done is irrelevant and
hidden from the chess expert – all he needs to know is the
language itself – coupled, obviously, with her chess competence.
Such an approach will inevitably lead to a proliferation of
languages and domain specific compilers, potentially even within
the same domain. The challenges raised by such an approach are
twofold: first, how to manage the ecosystem of a large number of

languages; second, how to mitigate the threat of one language for
each product syndrome.
There have been recently proposals on creating language or
modeling workbenches (such as [1], [2], [3]) that can provide a
unified meta-environment in which to create new language or
modeling environments as well as supporting compilers.
Irrespective of how it will be achieved, we believe that the answer
is to create language lines, in analogy to product lines: groups of
languages that share the same foundations and exhibit controlled
variations to accommodate specific needs of specific domains.
Language and modeling workbenches are one way to achieve this;
embedding in host languages – such as Haskell – is another.
A related problem is the problem of transforming domain specific
applications written in domain specific languages or modeling
environments into target specific, efficient software (expressed in
assembler or traditional imperative languages). As opposed to the
language lines, compilers for domain specific languages /
modeling environments need to mitigate two constraints: support
domain specific constructs and target specific, architectural
features. While on the language side there’s one dimension –
domain type – for compilers there will be two: domain type and
target type; creating separate compilers for each target and each
domain is economically hard to sustain – hence a different
approach is needed.
We believe there are two key technologies that will help us
manage the complexity of a compiler forest: first, finding a
commonly usable abstraction model to which programs written in
all or most domain specific languages can be transformed;
second, creating compiler product lines, that can efficiently
transform programs represented in the abstraction model into
quality target code. Compiler product lines are likely to center on
specific targets with variability points for domain specific
constructs.
The grand challenge of this model will be finding the right
abstraction model. As the work of Intentional Software [2] or
MetaCase [3] has shown, such abstract models and repositories
can indeed be designed – but lot of issues remain to be addressed,
related primarily to handling specific variability for different
problem domains. Host languages provide another interesting
alternative that is yet to be thoroughly explored.
Figure 2 summarizes our view: the concepts of
language/modeling workbenches and host languages, common
abstract models and compiler product lines.

Language workbench /
host language

<<create DSLs>>

DSLs

Programs written
in DSLs

Common abstract model

<<domain specific compilation>>
HW - 1

HW - 2

HW - 3

<<target specific
compilation>>

Figure 2 Basic concepts

390

4. LOSE: LANGUAGE ORIENTED
SOFTWARE ENGINEERING
Traditionally, there has been a pretty sharp divide between
domain experts and software experts: domain experts are
supposed to specify to as great detail as possible – in one shot or
iteratively – what needs to be supported; software experts are
expected to design, implement and test these requirements as
faithfully as possible – providing the how component of software
system design.
The key problems we are struggling with are related to the ever-
increasing complexity of target systems that put too much
emphasis on target specific issues as opposed to domain specific
problems and the extreme difficulty to comply with the
requirement of as faithfully as possible. This difficulty is
primarily related to the handover that has to happen between
domain experts and software experts ‘supported’ by the inexact
nature of human communication.
Language oriented software engineering (LOSE) aims at tackling
both of these problems by putting the responsibility of designing
the system in the hands of domain experts, hence removing the
problem area of requirement handover; inherently, requiring
domain experts to design systems mandates the usage of very
high level languages and design environments in order to avoid
the need for having non-software experts deal with software and
hardware specific details.
Language oriented programming has been proposed before (see
[7]). However, the focus was still on software engineers and
programmers – we believe there’s a need to put the right tools in
the hands of domain experts, whereas software experts will focus
on the translation techniques only.

Domain expertise

Platform Expertise

Map to DSL
concepts & constructs

Define required domain
concepts & constructs

Implement
system
using
DSL

Feedback
loop on DSL

Implement
system
using
DSL

System
designed
using the DSL

Compilation,
debug and

profiling
infrastructure

Compilation and
deployment on
target system(s)

STEP I STEP II STEP III

Multiple iterations if needed

Figure 3 Steps in Language Oriented Software Engineering

The phases of software engineering will be markedly different in
LOSE, illustrated in Figure 3. The first step is to define the
problem domain and the concepts and constructs that are needed
to express solutions for the specific domain. Essentially, this step
replaces from the software engineer’s point of view, the
requirement management phase, as it defines what problem
domain rather than requirements needs to be supported.
The second step is the selection or the definition and
implementation of a domain specific language that can support
the concepts and constructs defined in the first step. This work is
highly interactive between software and domain experts and by its
own nature is condemned to succeed: either the language will

meet the requirements or it will be unusable which will be found
out as soon as prototypes are being implemented.
Once the domain specific language definition is sufficient for the
task at hand, the software and domain experts can continue
working largely independently of each other: domain experts will
focus on the implementation of the system itself – which may
require multiple iterations on the language itself – while software
experts will focus on selecting the right target platform and
creating the compiler, debug and profiling infrastructure for the
domain specific language. There is no need for software experts
to understand the problem itself – what is needed is a precise
definition of the expected behavior of the concepts and constructs
in order to be able to build efficient transformations towards the
target environment. This step may go through multiple iterations,
as the need for more or different constructs is discovered.
The final step, as soon as the system itself and the compiler are in
place, is the automatic generation of target code, profiling, which
may result in potential refinement of both source code and
compiler in order to reach the desired performance characteristics.
LOSE has several specific characteristics: it shifts away from the
software experts the task of designing the actual system towards
the domain experts, allowing the software experts to focus
primarily on target specific issues rather than the problem
domain. In many ways, it is the implementation of the work
division principle in software engineering: allow everyone to
focus on their best skills, provided with the right tools. This is a
significant departure from today’s approach of having software
experts deal with a significant amount of problem domain issues.
There’s an interesting connection between product lines and
language-oriented software engineering. Software product lines
are characteristic to specific problem domains; as the goal of
LOSE is to create domain specific high level development
environments usable by domain experts, LOSE actually creates
the domain specific infrastructure for software product lines,
providing a common foundation based on which multiple
products within the same product line can be built. It’s a different
approach from traditional software product line engineering: it
emphasizes the domain specific tools needed to create the product
line, as foundation for the components that will actually
contribute to the family of products.

5. RESEARCH CHALLENGES
Language oriented software engineering raises a number of
research challenges that need to be addressed in order to fully
exploit the benefits of such an approach.
First, we need to define and develop reliable workbenches,
frameworks and/or host languages that enable fast, reliable and
easy definition of new domain specific languages or modeling
environments with a backend infrastructure that can support a
formal representation of programs written using these languages.
There are several attempts in this direction, but scaling such
approaches to large scale, distributed development and – equally
important – making it easy to use by non-software experts is a
challenge that still needs to be addressed.
The compilation infrastructure is of equal importance. We need to
understand how we can create large families of language and
model compilers that can deal with potentially thousands of
domain specific variations and large numbers of target platforms.
Support for automatic verification of consistency, validation on

391

the domain level etc all need to be revisited and expanded.
Support for automatic transformation into software that can
execute on modern multi- and many-core hardware architectures
is a challenge in its own right.
Beside the technology aspects, we need to reshape the way we
develop systems. LOSE is a radical departure from today’s
approaches focusing on the software engineer, with domain
experts playing just a supporting role – we have to accommodate
two types of main actors, with different visions on the problem,
solution and ways to achieve this. Traditional cycles of
development are not valid anymore, the task division happens
along different lines (platform-specific versus domain-specific).

6. EXISTING EXAMPLES
There are several well-established domain specific languages that
have shown great potential in delivering higher abstraction level
without compromising on performance: examples include SQL,
Erlang (specifically developed for designing massively parallel
telecommunications systems but has shown excellent performance
and efficiency in various settings, e.g. Web 2.0 applications); the
activities at Stanford's Pervasive Parallelism Laboratory, aiming
at creating a DSL framework for parallel targets based on the
SCALA language, have also delivered efficient DSLs for various
domains.
In this chapter we highlight two existing examples of domain
specific high level languages where the authors of this paper have
been involved and which have shown good productivity gains,
even when used by domain experts rather than software experts.

6.1 Feldspar: Functional Embedded
Language for DSP and Parallelism
Feldspar (available open source at http://feldspar.sourceforge.net)
is an embedded functional language targeting DSP algorithm
design. It is made up of two layers: the high level, abstract layer is
where domain experts operate, using familiar constructs such as
vectors, filters, bit manipulations; however, what they actually
produce are code generators that generate an internal, functional,
format suitable for target-specific compilation. The representation
in this intermediate format is transformed into target specific C
code, which exhibits comparable behavior with handcrafted C
code ([4]).

6.2 CAL: An Actor Language for Parallelism
The CAL actor language is a data flow language designed for
streaming applications. It is part of the MPEG/ISO RVC standard
as the means for specifying decoders. By describing the
applications as a dataflow network the available parallelism is
explicitly exposed. The details of relating the application
parallelism to the target hardware is not part of the actual
application, which only specifies how data flow, not where and

when the execution occurs. CAL has been used for a number of
applications showing a dramatic increase in development time. In
[6] an MPEG 4 decoder is implemented in CAL for FPGA
achieving result that was both faster and smaller (both in silicon
area and lines of code) and developed in quarter of the time
compared to hand coded VHDL; the higher abstraction level
allowed the authors to work faster and make more radical
architecture modification and more easily trying out different
solutions, in the end leading to a more efficient implementation.
Ongoing work at Ericsson Research using CAL for multimedia
applications shows good scale-up with the number of cores,
without the application written with particular targets in mind.

7. SUMMARY
In this paper we argue for a novel approach to engineering
software systems, where the task of designing the actual system is
put in the hands of domain experts with no or limited software
engineering expertise, while software experts’ role is transformed
into providing the needed tools, transformation infrastructure and
target support, rather than developing the system itself. We
believe the main tool is domain specific, high level, intuitive,
potentially graphical languages, hence we call this approach
LOSE (Language Oriented Software Engineering).

8. REFERENCES
[1] Fowler, M. Language Workbenches: The Killer-App for

Domain Specific Languages? retrieved on 04.06.2010, from
http://martinfowler.com/articles/languageWorkbench.html

[2] Christerson, M. and Kolk, H. Intentional Software – Domain
Expert DSLs. At QCon 2008, London, UK, 2008.

[3] Luoma, J., Kelly, S., Tolvanen, J-P. Defining Domain-
Specific Modeling Languages: Collected Experiences, in
Proceedings of the 4th OOPSLA Workshop on Domain-
Specific Modeling (DSM’04), Vancouver, Canada, Oct
2004.

[4] Dévai, G. et al : Efficient Code Generation from the High-
level Domain-specific Language Feldspar for DSPs,8th
Workshop on Optimizations for DSP and Embedded
Systems, Toronto, Canada, 2010

[5] Asanovic, K. et al., A view of the parallel computing
landscape. In Communications of the ACM, 2009.

[6] Janneck, J, Miller, I., Parlour, D., Roquier, G., Wipliez, M.,
Raulet, M., Synthesizing Hardware from Dataflow
Programs: an MPEG-4 Simple Profile Decoder Case Study.
In Proceedings of the 2008 IEEE Workshop on Signal
Processing Systems (SiPS), Washington D.C., 2008.

[7] Ward, M., Language Oriented Programming, in Software –
Concepts and Tools, vol. 15, no. 4, pp. 147 – 161, 1994..

392

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

