Supporting Experiment and Observation at ALCF

TOM URAM
Scientific Application Developer

MAGIC Meeting
7 October 2015
Major Scientific User Facilities at Argonne National Laboratory

This provides us with a rich testbed to work on ideas of how to support experimental sciences.
Argonne Leadership Computing Facility

- Established in 2004
- Funded by DOE’s *Advanced Scientific Computing Research* program.
- Operates as two centers, at Argonne and at Oak Ridge National Laboratory, and are **fully dedicated** to open science.
- Operates two petascale architectures that are **10-100 times more powerful** than systems typically available for open scientific research.
What is Leadership Computing?

- A gateway for scientific discovery and a tool for understanding the world around us.

- Scientific breakthroughs lead to advancements that help solve the great scientific, energy, environment, and security challenges of our time.

- The nation that leads the world in HPC will have an enormous competitive advantage in every sector, from energy and environment to manufacturing.
ALCF-2 Systems

Mira – IBM BG/Q [Production]
- 49,152 nodes / 786,432 cores
- 786 TB RAM
- Peak flop rate: 10 PF

Cetus – IBM BG/Q [Production]
- 4,096 nodes / 65,536 cores
- 64 TB RAM
- Peak flop rate: 836 TF

Vesta – IBM BG/Q [Testing & Development]
- 2,048 nodes / 32,768 cores
- 32 TB RAM
- Peak flop rate: 419 TF

Cooley – Cray/NVIDIA [Production]
- 126 nodes / 1512 Intel Haswell CPU cores
- 126 NVIDIA Tesla K80 GPUs
- 48 TB RAM / 3 TB GPU memory
- Peak flop rate: 223 TF

Storage
- Home: 1.44 PB raw capacity
- Scratch:
 - ofs0 - 26.88 PB raw, 19 PB usable; 240 GB/s sustained
 - ofs1 - 10 PB raw, 7 PB usable; 90 GB/s sustained
 - ofs2 (ESS) - 14 PB raw, 7.6 PB usable; 400 GB/s sustained
 (not in production yet)
- Tape: 21.25 PB of raw archival storage [17 PB in use]
Three primary ways for access to LCF

Distribution of allocable hours

- **Up to 30%** ASCR Leadership Computing Challenge
- **10%** Director’s Discretionary
- **60% INCITE** 5.8 billion core-hours in CY2014

DOE/Office of Science capability computing

Leadership-class computing
How time on DOE Leadership Computing systems is awarded

INCITE
- Peer-reviewed program open to any researcher in the world
- 5.8 B core-hours awarded for 2015 on ALCF’s IBM BG/Q Mira and OLCF’s Cray XK7 Titan.
- Approximately **60 percent** of ALCF resources are allocated through INCITE.

ASCR Leadership Computing Challenge
- Peer-reviewed program
- Allocates up to **30 percent** of the computational resources at ALCF, NERSC, and OLCF.
- Emphasis on high-risk, high-reward simulations in areas directly related to the DOE’s energy mission, national emergencies, or for broadening the community of researchers capable of using leadership class resources

Director’s Discretionary
- Peer-reviewed program open to researchers in academia and industry.
- Primarily a “first step” for projects working toward an INCITE or ALCC award.
- Allocates up to **10 percent** of the computational resources at ALCF.
Experimental and Observational Data

- APS
- ALS
- LSST
- DUNE
- LCLS
- SPT
- SNS
- LHC
- DES
- LSST
- ARM
- JCESR
LHC Simulation and Experiment
Argonne ATLAS group

How It Works

Simulated Data Chain

Event Generation
Simulates the physics process of interest: produces lists of particles and their momenta

Simulation
Simulates the interaction of these particles with the detector

Reconstruction
Infers particles that must have been present based on the detector response

Analysis: comparing the two

Real Data Chain

Reconstruction
LHC Simulation and Experiment
Argonne ATLAS group

Where we were 1 year ago

- We could run in the minimum Mira partition (and only in the minimum efficiently)
- Event generation rate was 1/15 of a Grid node
 - ALCF suggests a nominal of 1/10

At this point, we are limited by I/O.

Based on this success, the experiment asked us to do all the Alpgen generation for the next two years

While this job was running, Mira was producing the equivalent computing as 5 or 6 ATLAS Grids.

On our best days, we provide the equivalent computing capacity of the whole ATLAS Grid.

Slides from Tom LeCompte (ANL)
Boosting Light Source Productivity with *Swift* Data Analysis on ALCF Blue Gene/Q

New Insight!

Valid Data?

1. Analyze
2. Assess
3. Fix
4. Re-analyze
5. Work of H Sharma, J Almer, J Wozniak, I Foster, M Wilde
<table>
<thead>
<tr>
<th>Impact and Approach</th>
<th>Accomplishments</th>
<th>ALCF Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• HEDM imaging and analysis shows granular material structure, non-destructively</td>
<td>• Mira analyzes experiment in 10 mins vs. 5.2 hours on APS cluster: > 30X improvement</td>
<td>• Design, develop, support, and trial user engagement to make Swift workflow solution on ALCF systems a reliable, secure and supported production service</td>
</tr>
<tr>
<td>• APS Sector 1 scientists use Mira to process data from live HEDM experiments, providing real-time feedback to correct or improve in-progress experiments</td>
<td>• Scaling up to ~ 128K cores (driven by data features)</td>
<td>• Creation and support of the Petrel data server</td>
</tr>
<tr>
<td>• Scientists working with Discovery Engines LDRD developed new Swift analysis workflows to process APS data from Sectors 1, 6, and 11</td>
<td>• Cable flaw was found and fixed at start of experiment, saving an entire multi-day experiment and valuable user time and APS beam time.</td>
<td>• Reserved resources on Mira for APS HEDM experiment at Sector 1-ID beamline (8/10/2014 and future sessions in APS 2015 Run 1)</td>
</tr>
</tbody>
</table>

Boosting Light Source Productivity with Swift ALCF Data Analysis

H Sharma, J Almer (APS); J Wozniak, M Wilde, I Foster (MCS)
ALCF Users and Contributions

• Joint Center for Energy Storage Research (JCESR) to drive the Electrolyte Genome efforts within the umbrella of the Materials Project http://materialsproject.org
• Also utilized by the discretionary project NMGC-Mira-2013
• ALCF has developed queue adapters for Fireworks, a variant of the Cobalt scheduler for running Cobalt within Cobalt, and worked to adapt the existing Materials Project infrastructure for use with ALCF resources
• All code, including the ANL Cobalt scheduler are fully open source and available to the wider community.
Software Description

- FireWorks is free, open-source software for defining, managing and executing scientific workflows.
- Written in Python and backed by a scalable NoSQL MongoDB database.
- FireWorks was developed primarily by Anubhav Jain at Lawrence Berkeley National Lab, using research funding from Kristin Persson for the Materials Project, supported by the U.S. Department of Energy, Batteries for Advanced Transportation Technologies (BATT) and a LDRD grant from LBNL.

Key Terms

- **FireTask**: an atomic computing job. It can call a single shell script or execute a single Python function definable through FireWorks or an external program.
- **FireWork**: specification for a job composed of one or more FireTasks and their input parameters in JSON.
- **Workflow**: A set of FireWorks which may have dependencies between them.
- **LaunchPad**: the frontend that acts as a server and manages workflows.
- **FireWorker**: a compute resource that requests workflows from the LaunchPad, execute them, and send back information.
Challenges

- LCF mission is to support large long running jobs versus many small jobs
 - Addressing via multiple approaches (Cobalt scheduler development, Swift, Fireworks)
- Diverse computational workloads
- Batch versus real-time
 - APS users require fast turnaround of data analysis to ensure the correct data is being captured
- Data movement, archiving, curation