
Opportunity-Centered Software Development

Kevin Sullivan
University of Virginia Department of Computer Science

151 Engineer’s Way
Charlottesville, VA 22904 USA

sullivan@virginia.edu

ABSTRACT
The position of this paper is that it is worthwhile to invest
now in use-inspired fundamental research and development
leading to a new class of software development environments
and methods, in which software investment opportunities (in
addition to software capabilities) are modeled and analyzed
explicitly, in support of a dynamic investment management
approach to software development decision making. The-
oretical work in this area has progressed far enough, and
at the same time the cost of converting theory to practice
has been radically reduced by advances in software devel-
opment environment technology. The potential payoff on
such an investment is a significantly improved capability for
both engineers and executives to see, value, and exploit flex-
ibility in software products, projects and processes, leading
to significant improvements in decision making and thus in
software design productivity.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—design economics; D.2.6 [Software Engineering]:
Programming Environments—opportunity-driven development

General Terms
Economics. Design

Keywords
Opportunity-driven, value-based, software development en-
vironments, dynamic investment management

1. INTRODUCTION
Recent years have seen increasingly acceptance of the idea

that software development should be managed to a degree
as an investment activity [4]. We see this trend in academic
work on value-based software engineering [2], including work
on options in valuing design flexibility in phased projects

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FoSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11 ...$10.00.

and modular architectures [5, 1], in appeals to mechanism
design as a framework for aligning incentives of individual
and organizations with technical needs [3], and increasingly
among practitioners, e.g., in the emerging notion of technical
debt as a metaphor for the carrying costs of design expedients
(see related paper in this proceedings).

Research to operationalize this perspective is timely and
likely to produce significant payoffs: advancing industrial
design and productivity and elucidating fundamentals of
design processes. The economic perspective has reached a
meaningful level of maturity, visibility and acceptance. At
the same time, software development environment technol-
ogy has evolved to readily support new abstractions. This
paper outlines a set of economic abstractions to be supported
and argue that it is time to make them a more central fo-
cus. The key concept is that of the software investment
opportunity: a possible task or sub-project whose execution
is deemed to have the potential, should the right conditions
arise, to increase the value of the project net of the cost of
task. The problem this paper addresses is that developers
and executives lack adequate support to document, analyze,
track, and exploit software investment opportunities.

There are many issues to address. We need a princi-
pled, easy to understand economic framework in terms of
which everyone from junior developers to senior executives
can communicate and reason about software capabilities and
opportunities and their value. Distinguishing between ca-
pabilities (e.g., features) and opportunities and making the
latter explicit is a key step. Formulating a principled, vali-
dated, dynamic approach to deciding when, if ever, to invest
is especially important. Work in this area is timely, has intel-
lectual merit in linking design to economics, and has strong
potential to produce strong positive impacts on practice.

2. APPROACH
Software engineers and managers connect at the point

where decisions are made about what to pay for. A ra-
tional decision to make an investment rests on several hy-
potheses: that there is a fitness gap; this gap has created
a potentially profitable investment opportunity; and condi-
tions dictate that it is now optimal to make the investment.
A fitness gap is a discrepancy between the state of a prod-
uct or project and a hypothesized state that is economically
better in the assumed environment. A fitness gap creates
a potentially profitable investment opportunity if one judges
that there are current or possible future conditions under
which it would be profitable to invest in closing the gap.
The dynamic decision making problem is to decide when, if

369

ever, to exercise such an opportunity. The goal is to do so in
a way that maximally increases project value net of invest-
ment costs. Exercising an opportunity yields a new task to
be carried out by the project team. The question that this
paper asks, is what capabilities must software development
environments provide to support development processes in
which such reasoning about opportunities is central?

Any computation of the value of an opportunity or the
payoff on exercising it depends on assumptions about the
surrounding environment and how it will evolve over time
(e.g., the market’s willingness to pay for a particular feature
set). Stochastic models of assumed environments are thus
required. One must model actual and hypothesized product
and project states, fitness gaps, and induced investment op-
portunities. We also need methods for analyzing and quan-
tifying the present value of investment opportunities, and
decision rules for deciding when, if ever, to invest.

The state of an environment changes continually. These
changes produce corresponding changes in the values of in-
vestment opportunities and must trigger reconsideration of
investment decision rules. The implication is that we need to
use a dynamic, conditions-driven approach to investment de-
cision making. By making investment opportunities explicit
and quantified, this approach will make software investments
subject to systematic dynamic management. Such an envi-
ronment will support both engineering decision making as
well as engineer-executive communications about economi-
cally critical technical issues many of which (e.g., how ar-
chitectures create investment opportunities) heretofore have
been all but invisible to executives.

3. TERMINOLOGY
I use the term project to refer to a combination of soft-

ware artifacts, process and organization. I use environment
to refer to the context of use. I do not develop a detailed ap-
proach to modeling projects or environments here. For pur-
poses of discussion, I assume an approach in which they are
modeled as networks of state variables (or “concerns”, e.g.,
architectural and API decisions level of demand for a prod-
uct, etc.), connected by relations representing dependencies
among such concerns. Technical characteristics would be
modeled as configurations of such variables. A fitness gap
would be modeled as the difference between the actual state
and a hypothetical better state, e.g., a state with a bug ver-
sus one in which it is fixed.

Such models need not be elaborate. Even a simple two-
variable model might suffice in some cases: e.g., to compare
an actual system having good features but an inadequate ar-
chitecture (two concerns) to a better system good in both di-
mensions. The relevant characteristic is modeled by the ar-
chitecture variable: e.g., (architecture = inadequate). The
gap is that the value is not ideal. The question is whether it
adds value to the project to pay to close this gap (to make
architecture = adequate). Answering this question requires
a business analysis. This analysis could be anything from a
subjective stipulation to an elaborate, extended net present
value or options analysis. The point is, we need development
environments that support such modeling and analysis.

4. FITNESS GAPS
Examples of fitness gaps include missing features, defects,

inadequate dependability cases, poor architecture. This no-

tion of fitness gaps is broader than the emerging notion of
technical debt, which focuses on gaps that are hard for non-
technical decision-makers to see. I believe, at this time,
that an opportunity-based perspective is more technically
sound, and largely subsumes the notion of technical debt.
The question as whether the debt metaphor is psychologi-
cally more effective with the intended audience is interesting
and remains unanswered.

To determine whether a fitness gap creates a potentially
profitable investment opportunity, one must see the project
in its environment. A project that is good enough even if
technically imperfect might be perfectly fit for its assumed
environment, in that no technical improvement would im-
prove its value. Throw-away prototypes are in this category.
A technically perfect prototype could cost more yet have no
more value. On the other hand, a defect in a mission-critical
system would create an investment opportunity, in the sense
that a hypothetical, corrected, system would have greater
value.

The interesting cases are the ones that are not so clear.
For example, developers of a project want to spend several
months refactoring to ease future development but execu-
tives want to keep delivering features. Such disagreements
often fail to converge, and end on suboptimal terms. The
approach that is described here would encourage and help
each side not just to advocate for the investments it favors,
but to explicate how they would increase project value.

5. INVESTMENT OPPORTUNITIES
The mere existence of a gap does not create a prima facia

case for an investment. In this sense, the technical debt
metaphor can be misleading, in that it seems to suggest
that there is always (eventually) value to be had in repaying
a debt (closing a gap). Closing a gap is better understood
as an investment option than as a debt or even as a debt
with an option to default. A working but unmaintainable
legacy system has fitness gaps but still might present no
potentially profitable investment opportunities, because any
significant change is too costly or risky. Some defects, which
clearly create fitness gaps, are still not worth fixing because
the risks would outweigh the benefits. Similarly, a technical
debt in the form of poor architecture might not be worth
fixing if the future holds little demand for change.

It is very important, however, to understand that a gap
that cannot profitably be closed immediately can still cre-
ate a valuable investment opportunity—if the environment
might change in a way that would make it profitable to close
it. An example is a change in the environment for what
started as a throw-away prototype. As soon as a decision is
made to develop the prototype into a product, the imper-
fection that were not worth fixing in the prototype become
opportunities that are immediately profitable to exercise.

The current generation of task-centered environments does
not support reasoning in terms of environments, gaps, in-
vestment opportunities, and dynamic investment decision
making. This paper presents a hypothesis that it is now
worth closing this gap. In particular, doing so would enable
technical people to make better decisions; it would make the
value of the flexibility created by a set of investment oppor-
tunities clear both within and outside the technical team; it
would also improve managerial decision making in matters
of technical importance; and ultimately it would increase
the value of investments in software.

370

6. POSITION
What developers need now is a simple, holistic conceptual

framework—a narrative—supported by modern software de-
velopment environments, within which to reason about the
economic issues that must be considered to make rational
decisions. The position of this paper is that evolving fitness
gaps between systems and their environments create valuable
investment opportunities that should be exercised optimally
through a dynamic investment decision making process. This
position leads to a practical framework within which such
concepts as present value, real options and technical debt
can be organized for practical use. It promises to lead to
a new kind of software development environment and pro-
cess that more effectively supports systematic documenta-
tion and management of investment opportunities.

The narrative also appears to have the potential to cat-
alyze deeper shifts in the way we think about software projects.
It could, for example, change how we think about require-
ments. The term requirement connotes a joint assertion that
(a) there is a gap to be closed, and (b) it will be profitable
to close it! In reality, even if one is right about (a), the
validity of (b) is a separate matter altogether. Rather than
requirements, a rational project manager seeks to discover
or construct profitable investment opportunities. Software
development might therefore be re-conceived not in terms
of requirements, but rather in terms of a search for fitness
gaps that are worth closing.

This paper asserts that there is now a significant fitness
gap between current generation software development tools
and methods and a hypothesized class of betters tools and
methods—ones that support opportunity-driven development.
Effective decision making requires systematic consideration
of economics, yet the state of the art in tools and methods
mainly puts tasks and artifacts at the focus of concern. El-
evating tasks to first-class status in software development
was a real advance; but it does not go far enough. All the
economic reasoning that leads to a selection of tasks is left
unsupported. Tasks are not opportunities but only reflect
that set of opportunities already being exercised. A task
backlog partially represents opportunities but does not come
with any economic analysis or decision support. Today’s en-
vironments provide engineers and executives with a highly
incomplete picture of the situation they need to understand.

This fitness gap create a profitable opportunity for an in-
vestment in research and development, both because the
payoff seems likely to be high, and because the cost is now
quite manageable. Past work in two areas leaves us in a
strong position to close this gap. First, a decade of work
on value-based software engineering has laid the intellectual
groundwork. Second, advances in extensible software devel-
opment environments provides a quick path to operational-
izing these ideas. To be concrete, we have an opportunity
at relatively low cost to design, build, evaluate, and quickly
refine software development tools, environments, and pro-
cesses by building on such platforms as Eclipse and IBM’s
Jazz. What Mylyn and Jazz did for the notion of task-
centered development, we now need to do for investment-
opportunity-centered development. The combination of a
simple notion of investment opportunity, analogous to task,
with analogous support for explicit representation and track-
ing within modern development environments, provides a
distinct possibility for a high potential impact at a modest
cost and with manageable technical risks.

7. EXAMPLE
To make it a little clearer what one would see in such an

environment, consider a simple example. A company hy-
pothesizes that the market is reasonably likely (e.g., 50/50)
to pay enough for a new kind of software product to generate
a significant profit. There is no product today, and so there
is a fitness gap between what exists (nothing!) and what
is hypothesized (as might be described in a set of “require-
ments.”) This gap creates investment opportunities, among
which are two possible projects. One project (P1) would
implement the required features and also invest in a clean,
extensible architecture to enable long-term sustainability of
the system. The cost of this project at time t = 0 is esti-
mated at $2 million. The market uncertainty would then be
resolved at time t = 1, when the market decides whether or
not it likes the product. If the market likes it, the company
is projected to receive revenues with a value of $4 million,
for a profit of $2 million. If the market doesn’t like it, the
company will receives revenues worth only $1 million, for a
loss of $1 million. Each of these outcomes is deemed equally
likely, and so the net present value of this project at time
t = 0 is 0.5 ∗ −$1, 000, 000 + 0.5 ∗ $2, 000, 000 = $500, 000.
There is clearly a profitable investment opportunity here.

However, it’s not the only opportunity. Being clever, the
managers consider a second project strategy (P2). The idea
is to invest enough in a first stage of a project to imple-
ment the capabilities that the market needs to see to decide
whether it likes the idea. The strategy is to build a quick-
and-dirty product, without investing the resources needed
for a clean and extensible architecture. Suppose this first
stage costs only $1 million, due to savings on the archi-
tecture sub-project. If, on seeing the initial version of the
product, the market decides it likes it, then the plan is to
invest in a re-engineering project to impose an architecture
that will be good for the long term. Because this was not
done initially, the cost is higher: this project will consume
$1.5 million. On the other hand, if the market doesn’t like
the product, the company will simply decline to invest in an
improved architecture. In this case, there is a 0.5 chance of a
profit of −$2.5 million +$4 million = $1.5 million and a 0.5
chance of a wash −$1 million +$1 million. The net present
value of this project at time t = 0 is $750, 000, which is
significantly higher than for P1.

In other words, in the environment at time t = 0, a project
to produce an architecturally inadequate system has a higher
present value than a project to build a technically excellent
system. What’s happening is that the opportunity to invest
in an architeture later, at a higher cost, is worth more than
having the architecture immediately. If these are the only
options, then we have a situation in which the technically
imperfect system is the most fit (most valuable). It’s the
right system to build at t = 0, and the right way to model
it is as a system with given capabilites and an opportunity
to make a follow-on investment in systems re-architecting.

At time t = 1 the environment has changed. In the
unfavorable future environment (low demand), there is no
profitable investment opportunity. On the other hand, in
the favorable future, the architectural characteristics of the
quick-and-dirty solution are no longer well matched to the
environment (many future change requests), and so it makes
sense to exercise the latent opportunity to re-architect the
system (to reduce significant future change costs). Thus we
see a dynamic investment decision-making process in action.

371

While shortchanging the architecture in the first phase
could be considered as incurring a technical debt, there is
in fact no business case at all for “repaying the debt” until
the uncertainty about the future environment is resolved.
Moreover, no point does one does have an obligation to re-
pay (which is the connotation of the word debt, but rather
an opportunity to invest in a forward-looking refactoring
project. Rather, developers should think in terms of oppor-
tunities: rights without obligations to make future invest-
ments on terms that are understood today. Opportunities
are thus technically options. We use the term opportunity
instead, because the option term suggests that arbitrage-
based real option pricing techniques might apply. In an en-
gineering design setting, we believe they often do not apply,
because basic assumptions behind these techniques do not
hold (e.g., the existence of replicating portfolios or that un-
certainties are characterized by certain kinds of stochastic
processes).

What would the developers and managers see in their soft-
ware development environments in this example? First, the
t = 0 environment would be modeled, including the esti-
mated probabilities of future events (the market likes, or
does not like, our product). This could be done with a simple
event tree. Second, key technical characteristics and fitness
gaps would be modeled: including lack of an implementation
of the required features, and lack of an architecture for the
long haul. Third, the key investment opportunities created
by these gaps would be identified and models as entries in
the environment data base: P1 and P2 and an indication
that they are mutually exclusive. Fourth, the business cases
the I just laid out would be developed for each of these op-
portunities. Finally, the one (if any) that most increases
project value (P2) would be selected, and a task to develop
it would be entered into the task database. At time t = 1 a
critical event occurs: the market decides, resolving the value
of the random variable that models demand. At this point,
the environment model is updated. This change in environ-
ment would lead to a re-evaluation of fitness gaps and the
values of the investment opportunities. In only one of the
t = 1 futures (high demand) would there be a business case
for investing in architectural enhancement. In that future,
the refactoring opportunity would be exercised and a corre-
sponding task would placed in the development system.

8. CHALLENGES AND RISKS
The vision presented here would create numerous chal-

lenges. First, tracking changes and updating assumptions
and the state of the environment is not free. On the other
hand, this generally has to be and is done, albeit implicitly
and imperfectly. Second, the framework requires answers
to the question, “What is the present value of an opportu-
nity to invest in, e.g., architectural qualities, especially if it
has payoffs only in an uncertain future?” Here, a pluggable
framework is needed to accommodates a range of modeling
approaches. Third, while opportunities can lead to tasks,
not all tasks trace back to opportunities. Some are simply
sub-tasks without separate business cases. This proposed
framework also does not confront the many questions that
arise in any attempt to build a business cases in the face of
an uncertain future. What are the probabilities on the event
trees, and where do they come from? In this case, In many
cases we can do no better than to use well informed sub-

jective probabilities. Here, too, the framework here should
accommodate a wide variety of estimation approaches.

Rather than having a task list at the heart of a develop-
ment environment, tomorrow’s developers and managers will
opportunity lists with associated investment cases, derived
from consideration of changing and uncertain environment,
present and possible future states of nature, and business
cases at widely varying levels of detail and sophistication.
A critical observation is that opportunities create flexibility
to make investments in the future as conditions warrant; we
can model the present value of the flexibility to make such
investments in the future; and we can develop sound decision
rules about when, if ever, to invest.

9. CONCLUSION
Software product, project and process decisions are ulti-

mately driven by economic calculations. A problem is that
decision makers generally do not have an adequate picture
of all important sources of value. The value of a software
product derives from the market’s willingness to pay for its
capabilities and for the opportunities it affords for potentially
profitable future investments: to correct a system (e.g., fix
a bug), reduce uncertainty (e.g., more testing), change ca-
pabilities (e.g., new feature), or change its opportunity set
(e.g., through refactoring). Capabilities are visible both to
development teams and to executives and the market, and
their value is tangible, even if uncertain. Opportunities, are
generally not as visible to executives or the market. They
arise from design architectures and other technical aspects
of a system. Moreover, their value is intangible, because
it cannot easily be determined by immediate market tests,
but is instead contingent on uncertain future states of na-
ture. But opportunities do have present value. Indeed, the
value of the opportunities created by a system can be sig-
nificantly greater than the value of its current capabilities.
A rational approach to software decision making demands
that we make the existence and value of opportunity sets
visible and tangible in software development, and that we
then work to exploit them dynamically in an optimal man-
ner. This paper proposes that one way to do this is in the
development environments that developers use, and in the
executive-visible dashboards that these systems support.

10. ACKNOWLEDGMENTS
This work was supported in part by grants 0613840 and

1052874 from the National Science Foundation. I thank
the participants in the Software Engineering Institute’s 2010
Technical Debt workshop for providing me an opportunity
to present and work out these ideas.

11. REFERENCES
[1] C. Baldwin and K. Clark. Design rules. Vol. 1: The

power of modularity. MIT Press, 2000.

[2] S. Biffl, A. Aurum, B. Boehm, H. Erdogmus, and
P. Grunbacher, editors. Value-based software
engineering. Springer, 2005.

[3] P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,
T. Longstaff, R. Kazman, M. Klein, L. Northrop,
D. Schmidt, K. Sullivan, and K. Wallnau.
Ultra-Large-Scale Systems: The Software Challenge of
the Future, Study Report. Software Engineering
Institute, 2006.

372

[4] K. Sullivan, P. Chalasani, S. Jha, and V. Sazawal.
Software design as an investment activity: A real
options perspective. In c. e. L. Trigeorgis, editor, Real
Options and Business Strategy: Applications to
Decision Making. Risk Books, 1999.

[5] K. J. Sullivan, W. G. Griswold, Y. Cai, and B. Hallen.

The structure and value of modularity in software
design. In ESEC/FSE-9: Proceedings of the 8th
European software engineering conference held jointly
with 9th ACM SIGSOFT international symposium on
Foundations of software engineering, pages 99–108,
New York, NY, USA, 2001. ACM.

373

