
Moving CMS to a
Container-based

Infrastructure
Brian Bockelman

MAGIC Meeting, 4 April 2018

1

Note: 
Examining a narrow

corner of a broad area.

2

Apologies if your favorite part isn’t covered!
We can bring it up in the discussion afterward…

Setting the stage: 
CMS Science

• CMS is one of the general purpose particle detectors on the Large
Hadron Collider (LHC), located outside Geneva, Switzerland.

• When running, proton bunches cross at a rate of 40MHz; this year,
we’ll have an average of 40 collisions per crossing.

• Provides physicists in the CMS Collaboration (~4,000 individuals) the
data necessary to probe fundamental questions about the universe.

• Much of the discovery process breaks down into a statistics
exercise: counting observed collisions of a certain type versus
those explainable by known physics.

3

Setting the Stage: 
CMS Computing

• Perhaps unsurprisingly, one of the most complex physics endeavors
results in a multifaceted computing challenge:

• We need highly-tuned, high-performance computing hardware near
the detector to quickly filter out >99.99% of the data resulting from
uninteresting events.

• The remaining ~0.001% events have more potential physics value,
enough to be analyzed in depth. The raw readouts must be
“reconstructed” into physics objects.

• Bad news: these ~0.001% of events are still billions of events,
requiring hundreds of millions of computing hours to reconstruct.

• Worse news: for every event kept by the detector, we need to simulate
2 events to understand the background statistics. Simulated events
take twice as much CPU as “real” events.

• But we’re not done yet: the events must be processed by users in order to
perform their scientific analyses. We also have to ~yearly reconstruct the
entire dataset as our algorithms and calibrations improve.

In the end, this is a multi-billion-CPU-hour affair!4

HLT

RECO

GEN

SIM

DIGI

RECO

Analysis

Detector 
Data

Simulated 
Data

Setting the Stage: 
CMS Computing

• The HEP community has traditionally turned to distributed computing to
tackle their computing challenges:

• Cannot find enough resources at a single site to tackle the entire
problem.

• Each event can be processed independently of the others -> no need
for tightly-coupled communication.

• Allows us to quickly leverage any available resources, regardless of
where they sit.

• This is traditionally expressed as a high throughput computing problem:
“how many events can be processed per month?”, not “how many
events per second?”

5

Distributed High Throughput
Computing (DHTC)

• Within the US, OSG provides a common platform and
operation services to execute DHTC-style workflows.

• While ATLAS and CMS dominate the raw hours on OSG, it’s
a much wider community effort.

• A common platform helps avoid reinvention and allows easier
sharing and technology transfer. Singularity is a great example
of this.

6

Challenges: 
Portable Environments

• The CMS experiment needs a wide variety of software packages to
support its activities. Counting “lines of code” is tricky, but millions
of lines of code exist for CMS software, building on top of tens of
millions LoC of HEP community software.

• Smaller than a Linux distribution - but similar in complexity.

• We need all this software to function consistently on a wide variety
of clusters, each with a subtly different OS environment.

• Solution #0: Install our software at every site by hand.

• Man-power intensive, nearly impossible to synchronize installs
across all sites, impossible to do any sort of integrity checking.

7

Portable Environments:
CVMFS

• The CERN VM File System (CVMFS) is a FUSE-
based filesystem that provides a consistent,
global read-only shared filesystem.

• Metadata and data is transported over HTTP;
utilizes a hierarchy of HTTP servers and
caches to efficiently deliver LHC’s software to
the worker nodes:

• Good news: provides efficient, reliable access to
tens of millions of files / 10’s of TB of data.

• Bad news: it still is a custom filesystem;
adoption is limited outside sites traditionally used
by the HEP community.

• CVMFS tackles the software distribution
problem, but not the problems with uniform OS
environments!

8

Origin Tier

Data Distribution Tier

Repository A
(Exports hashed
files over HTTP)

Repository B
(Data distribution

not shown)

Stratum-1
(Periodic sync

from repos)

Stratum-1
(Periodic sync

from repos)

Stratum-1
(Periodic sync

from repos)

Trust Root

Stratum-0
(Key signing)

Standard Site

Squid Cache

Worker Node
(with local disk

cache)

Worker Node
(with local disk

cache)

Alien Cache Site
High

Performance
Storage

Worker Node
(no disk)

Worker Node
(no disk)

Challenge: 
Isolated Execution

• CMS - and most of HEP - uses batch resources in a “pilot model” or “overlay
model” or “resource allocation model”:

• A “pilot job” is sent to the batch system.

• On start (“resource allocation”), the pilot validates the environment and starts a
connection to a global pool of resources.

• Pilot downloads and executes the “payload jobs”, which are the actual user’s
scientific tasks.

• Sounds strange for batch system admins! Easier to understand if you think of the
batch system as a miniature “cloud” and the pilot as a request for a VM.

• However, unlike VMs the pilot is not root but a regular batch system user.

• Basic Question: How do we isolate the pilot process and credentials

9

Solution approach:
Singularity

• Singularity is a container solution tailored for the HPC
use case.

• It allows for a portable of OS runtime
environments.

• It can provide isolation needed by CMS.

• Simple isolation: Singularity does not do resource
management (i.e., limiting memory use), leaving that
to the batch system.

• Operations: No daemons, no UID switching; no edits
to config file needed. “Install RPM and done.”

• Goal: User has no additional privileges by being inside
container. E.g., disables all setuid binaries inside the
container.

http://singularity.lbl.gov

10

http://singularity.lbl.gov

Who is in a container?
• When should we invoke

Singularity? Before the pilot or
afterward?

• Three options when using
containers:

• A: Batch system starts pilot
inside a container.

• B: Pilot starts each payload
inside its own container.

• C: Combine A and B.

• Option A does not meet our
isolation goals. Option B and C
does.

Payload

Site Batch System

Pilot

Payload

Container

Site Batch System
Pilot

Option A:

Payload Payload

Option B:

Container Container

11

View From the Worker Node
- Sysadmin

Site Batch System

Pilot

Singularity

User Payload

12

View From the Worker Node
- Pilot Job

Site Batch System

Pilot

Singularity

User Payload

13

View From the Worker Node
- User job

User Payload

14

Inside the container, the user’s executable has no ability to interact with either the site
batch system or the pilot job (or, importantly, its files).

Singularity and CMS
• While we’ve wanted to leverage containers for years (HTCondor /

container integration predates Docker!), none fit into our environment as
the execution is happening as an unprivileged user inside a batch
system on a variety of Linux distributions found in research computing.

• Other solutions required much newer kernel features, root-level
privilege, or integrated poorly with batch systems.

• Immediately saw the potential of Singularity for our community.

• It only had minor features missing. Started contributing to the project
summer 2016; contributions to enable our community peaked in 2017.

• By version 2.2 in early 2017, we were able to run our workflows inside
Singularity.

15

Singularity Adoption
• In early CY2017, OSG developed the ability to run Singularity-based jobs

inside HTCondor:

• Singularity invoked by “job wrapper” that transforms Unix environment
and calculates the correct image and internal mount points.

• The images are distributed utilizing CVMFS as an “unpacked”
directory. Allow us to benefit from the same distribution network,
deduplication, and partial download capabilities as CVMFS.

• Only minor changes needed to translate OSG approach to CMS: mostly
around locating the container and CMS configuration files.

• By our March 2017 USCMS meeting, one site (Nebraska) had switched
production jobs to run inside Singularity.

16

Singularity Adoption
• Starting April 2017, any CMS site could

opt-in into container use.

• Slowly rolled out across interested
sites; mostly OSG initially.

• Multiple months of debugging the “long
tail” of tricky environment issues.

• In November 2017, CMS decided to
base its 2018 data-taking release on
RHEL7 and require the use of
Singularity.

• In January 2017, enabled the use of
unprivileged Singularity for sites with
newer kernels.

• March 2017 was the internal deadline
for sites to enable Singularity.

• 90% adoption hit by end of March.

17

As of April 2018, 

126 million 

containers launched. Up to 1M / day!

Singularity Enabled

Singularity Disabled

D
eadline

OSG AHM 2017

Pitfalls
• Shared filesystems: When data is mounted as a shared filesystem on the worker node, it can be

tricky to expose this correctly within a container

• Traditionally Unix filesystem access control is UID-centric, but here all users have the same UID.

• Do we need “containers for filesystems”?

• Broad range of Linux kernels: Singularity supports “ancient” kernel versions, some of which are
quite buggy with respect to container features. We’ve had to integrate quite a few workarounds…

• Validating runtime environment: How do we determine whether Singularity is setup and working?
Container image is correct?

• Ad-hoc process, mostly based on failure modes discovered by experience.

• Handling failures becomes tricky: new failure modes can cause tens of thousands of failed jobs
before being understood.

• It’s difficult/impossible to answer “can I spawn a new process?” in Linux: containers are an
order magnitude worse!

18

Lessons Learned
• Transition was surprisingly fast: containers solve significant

issues for our community and sites were happy to oblige.

• We benefited greatly from already tightly controlling the user
environment. Very few assumptions were made about what
was available at the site - particularly with respect to shared
filesystems - making containerization simpler.

• Container developers are enthusiastic, wonderful, and
productive — but not superhumans!

• Sometimes things break; we must understand the various
points of failure and be ready for it at the higher layer.

19

Looking forward: 
Going all-in on Containers

• CMS remains a strange user of Singularity: we care about portable OS
environment and isolation, but had a pre-existing domain-specific solution
for portable applications.

• The domain-specific solution (CVMFS) works wonderfully on resources
that commonly support HEP, but limit our ability to utilize a wider range
of resources.

• Investigating the ability to move our software stack into the container
itself.

• Size remains a problem as each release is 10GB and there may be 50
in-use releases.

• May require us to manage N containers instead of today’s single
container.

20

Looking forward: 
Tackling the HL-LHC era

• If nothing is done, the High-Luminosity
LHC (HL-LHC) in the mid-2020’s will
cause a two-order-magnitude increase
in computing challenges.

• The community is in the process of
rallying together to “bend the
resource curve” back into our
budgets.

• One strategy will be to better
utilize a wider diversity of
resources beyond traditional HEP
resources.

• Containers provide a powerful tool in
this direction: while we’ve converted to
using them at a large scale, we still
have significant challenges /
opportunities remaining!

21

"Any opinions, findings, conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the Networking and Information

Technology Research and Development Program."

The Networking and Information Technology Research and Development

(NITRD) Program

Mailing Address: NCO/NITRD, 2415 Eisenhower Avenue, Alexandria, VA 22314

 Physical Address: 490 L'Enfant Plaza SW, Suite 8001, Washington, DC 20024, USA Tel: 202-459-9674,

Fax: 202-459-9673, Email: nco@nitrd.gov, Website: https://www.nitrd.gov

mailto:nco@nitrd.gov
https://www.nitrd.gov/

