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FROM parent-image 

WORKDIR /data 

ADD mydata /data 

RUN yum install mysim 

EXPOSE 8080 
CMD [ "mysim", . . . ] 
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Purpose: 

To provide independent applications with 

the ability to define private, customized 

environments that are easily 

distributable. 

run build 



Docker Hub 
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Container Sub-Structure 
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FROM rhel7.2 

RUN yum install myexe 

COPY mydata /data  
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Encourage De-Duplication 
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Docker Compose (Static) 

• Common case: a web-service that consists of 
multiple concurrent services.   

IMG DF CNT IMG DF CNT IMG DF CNT 

Database Webserver Memcached 

myservice.yml docker-compose build myservice.yml 

Persistent state is outside the cluster. 

Requires external supervision to maintain. 

docker-compose up myservice.yml 



Docker Swarm (Dynamic) 
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create service www (2) 

create service memcached (3) 

create service database (2) 
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Persistent state is inside the cluster. 

Once created, self-maintaining. 



Docker Ecosystem 

• Docker containers are used widely in industry 
and have become an interchange format. 

• Google GCE, Amazon ECS, Mesos, Kubernetes 
all support Docker container execution.  (But 
not necessarily using Docker per se.) 

• Running your own container cluster is rather 
challenging! One opinion: 
https://thehftguy.com/2016/11/01/docker-in-production-an-
history-of-failure/ 
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Problem: Garbage Collection 

• Problem: Any authenticated user can consume storage by 
create/pulling new images, and nothing removes them 
automatically.  Any automated activity will eventually 
consume all storage and wedge docker. 

• A cronjob seems to be the community solution: 

 

 

• However, this doesn't take into account containers that are 
"needed" even if not currently run. 

• Effective use requires one of several ideas: 
– Use a small number of containers widely. 

– Trust users to delete unneeded containers. 

– Make use cases robust to periodic removal. 

docker images –q –a | xargs –no-run-if-empty docker rmi 



Problem: Adding Docker to HPC 
• Idea sounds simple: You already have a batch system, 

just put Docker on every node. 

• Very challenging to get this right: 

– Docker has very specific kernel requirements, consumes 
large amounts of local space, resources conflict with each 
other, independent scheduling. 

• Underlying challenge: Docker really wants to be your 
core resource manager.  It's fighting with the ones 
you already have: batch system, parallel file system.. 

• (Shifter, Singularity, CharlieCloud, and others are 
working to address this space directly.) 



Takeaways 

• Designed for deploying micro services, which 
is different than executing HTC/HPC jobs. 

• Docker container format is now standard. 

• Docker works very well within its own 
ecosystem, but is quite difficult to integrate 
into existing facilities. 

• Garbage collection remains unsolved prob. 

• Very sensitive to underlying kernel tech. 



Container Portability 
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http://ccl.cse.nd.edu 
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"Any opinions, findings, conclusions or recommendations 

expressed in this material are those of the author(s) and do not 
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