
Strategic Overview of Docker
in Fifteen Minutes

for Middleware And Grid Interagency
Coordination (MAGIC)

7 February 2018
Prof. Douglas Thain, University of Notre Dame

http://www.nd.edu/~dthain

dthain@nd.edu

@ProfThain

Container Overview

Portable
Filesystem

in a Single File

Private Filesystem

Resource Limits

Namespaces:
pid/net/ipc/mn/uts

FROM parent-image

WORKDIR /data

ADD mydata /data

RUN yum install mysim

EXPOSE 8080
CMD ["mysim", . . .]

Container

(Active)
Image

(Passive)

Build Script

(Dockerfile)

Purpose:

To provide independent applications with

the ability to define private, customized

environments that are easily

distributable.

run build

Docker Hub

Docker Structure

dockerd docker

Running Containers

Image Store

(root)

(user)

Containers:

run

create

attach

ps

cp

commit

start/stop

rm

Images:

images

pull / push

build

rmi

load / save

(access control)

MyDatabase

MyWebserver

push/pull

Container Sub-Structure

abcf1234 Base OS Layer

e7b38ac + Application

3986ab + Data

Writeable Scratch Layer

Dockerfile:

FROM rhel7.2

RUN yum install myexe

COPY mydata /data

AUFS OverlayFS
Device

Mapper

Kernel Storage Driver

P
a
s
s
iv

e
 Im

a
g
e

R
u
n
n
in

g
 C

o
n
ta

in
e
r

Appl r/w

Encourage De-Duplication

Base OS Layer (10GB)

+ Appl A (10MB)

Writeable
Scratch Layer

+ Appl B (20MB)

+ Data C (1GB)

Writeable
Scratch Layer

Writeable
Scratch Layer

+ Data A (100MB) + Data B (200MB)

Docker Compose (Static)

• Common case: a web-service that consists of
multiple concurrent services.

IMG DF CNT IMG DF CNT IMG DF CNT

Database Webserver Memcached

myservice.yml docker-compose build myservice.yml

Persistent state is outside the cluster.

Requires external supervision to maintain.

docker-compose up myservice.yml

Docker Swarm (Dynamic)

Manager

Manager

Manager

RAFT

Consensus

Worker Worker Worker

Worker Worker Worker

Worker Worker Worker

Swarm
State

DB

$$$

WWW

$$$ $$$

WWW

DB

create service www (2)

create service memcached (3)

create service database (2)

DB

Persistent state is inside the cluster.

Once created, self-maintaining.

Docker Ecosystem

• Docker containers are used widely in industry
and have become an interchange format.

• Google GCE, Amazon ECS, Mesos, Kubernetes
all support Docker container execution. (But
not necessarily using Docker per se.)

• Running your own container cluster is rather
challenging! One opinion:
https://thehftguy.com/2016/11/01/docker-in-production-an-
history-of-failure/

https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/
https://thehftguy.com/2016/11/01/docker-in-production-an-history-of-failure/

Problem: Garbage Collection

• Problem: Any authenticated user can consume storage by
create/pulling new images, and nothing removes them
automatically. Any automated activity will eventually
consume all storage and wedge docker.

• A cronjob seems to be the community solution:

• However, this doesn't take into account containers that are
"needed" even if not currently run.

• Effective use requires one of several ideas:
– Use a small number of containers widely.

– Trust users to delete unneeded containers.

– Make use cases robust to periodic removal.

docker images –q –a | xargs –no-run-if-empty docker rmi

Problem: Adding Docker to HPC
• Idea sounds simple: You already have a batch system,

just put Docker on every node.

• Very challenging to get this right:

– Docker has very specific kernel requirements, consumes
large amounts of local space, resources conflict with each
other, independent scheduling.

• Underlying challenge: Docker really wants to be your
core resource manager. It's fighting with the ones
you already have: batch system, parallel file system..

• (Shifter, Singularity, CharlieCloud, and others are
working to address this space directly.)

Takeaways

• Designed for deploying micro services, which
is different than executing HTC/HPC jobs.

• Docker container format is now standard.

• Docker works very well within its own
ecosystem, but is quite difficult to integrate
into existing facilities.

• Garbage collection remains unsolved prob.

• Very sensitive to underlying kernel tech.

Container Portability

In Makeflow

RHEL6 RHEL7 SLES8

Docker Singularity Task

Task Task

Wharf: Containers on

Shared Filesystems

dockerd A dockerd B

Cont.
Store

Cont.
Store

Shared Image Store

Data Data Data MDS

Parallel Filesystem

http://ccl.cse.nd.edu

@ProfThain

"Any opinions, findings, conclusions or recommendations

expressed in this material are those of the author(s) and do not

necessarily reflect the views of the Networking and Information

Technology Research and Development Program."

The Networking and Information Technology Research and Development

(NITRD) Program

Mailing Address: NCO/NITRD, 2415 Eisenhower Avenue, Alexandria, VA 22314

 Physical Address: 490 L'Enfant Plaza SW, Suite 8001, Washington, DC 20024, USA Tel: 202-459-9674,

Fax: 202-459-9673, Email: nco@nitrd.gov, Website: https://www.nitrd.gov

mailto:nco@nitrd.gov
https://www.nitrd.gov/

