
P R E S E N T E D  B Y

Sandia National Laboratories is a multimission 

laboratory managed and operated by National 

Technology & Engineering Solutions of Sandia, 

LLC, a wholly owned subsidiary of Honeywell 

International Inc., for the U.S. Department of 

Energy’s National Nuclear Security 

Administration under contract DE-NA0003525.

Leveraging Containerization for DevOps 

with Sandia's HPC Workloads

Andrew J .  Younge ,  PhD

ajyoung@ sandia . gov

Unclassified Unlimited Release

DUSA: DIS-CS

SAND2018-7367 PE



Motivation

Multiple drivers exist for using containers in HPC

1. Containers to help with DevOps
▪Development of HPC apps on workstations which can port & scale to supercomputers

▪Utilize testbed/cloud resources for functionality and feature testing

▪ Leverage latest Cloud craze in Docker containers

2. Containers to aid in emerging HPC workloads
▪Support for deep learning / machine learning software ecosystems

▪ Large-scale data analytics & in-situ workload ensembles

▪Streaming analytics & non-batch jobs



Container features wanted in HPC

▪BYOE - Bring-Your-Own-Environment.
▪ Developers define the operating environment and system libraries in which their application 

runs.

▪Composability
▪ Developers explicitly define how their software environment is composed of modular 

components as container images

▪ Enable reproducible environments that can potentially span different architectures

▪Portability
▪ Containers can be rebuilt, layered, or shared across multiple different computing systems

▪ Potentially from laptops to clouds to advanced supercomputing re- sources

▪Version Control Integration 
▪ Containers integrate with revision control systems like Git

▪ Include not only build manifests but also with complete container images using container 
registries like Docker Hub. 



Container features not wanted in HPC

▪Overhead
▪ HPC applications cannot incur significant overhead from containers

▪Micro-Services
▪ Micro-services container methodology does not apply to HPC workloads

▪ 1 application per node with multiple processes or threads per container 

▪On-node Partitioning 
▪ On-node partitioning with cgroups is not necessary (yet?) 

▪Root Operation 
▪ Containers allow root-level access control to users

▪ In supercomputers this is unnecessary and a significant security risk for facilities

▪Commodity Networking 
▪ Containers and their network control mechanisms are built around commodity networking (TCP/IP)

▪ Supercomputers utilize custom interconnects w/ OS kernel bypass operations



Container Vision @ Sandia

▪Support software dev and testing on laptops 
▪ Working builds then can run on supercomputers

▪ May also leverage VM/binary translation

▪Let developers specify how to build the environment AND the application
▪ Users just import a container and run on target platform

▪ Many containers, but can have different code “branches” for arch, compilers, etc.

▪ Not bound to vendor and sysadmin software release cycles

▪Performance matters!

▪Want to manage permutations of architectures and compilers
▪ x86 & KNL, ARMv8, POWER9, etc

▪ Intel, GCC, LLVM



Container Vision @ Sandia

▪Developers specify exactly their runtime environment
▪ OS, version

▪ Third-party libraries (TPLs)

▪ How to compile

▪Can share environment as a container with other developers
▪ Quickly get env to new developer

▪ Provide software as a container to analysts

▪ Developer makes changes, triggerd container build with CI, validated image

▪Leverage same container image on different clusters or supercomputers



Trilinos Muelu Container Example 

FROM ajyounge/dev-tpl

WORKDIR /opt/trilinos

# Copy files to image 

COPY do-configure /opt/trilinos/ 

# Download Trilinos source tarball

RUN wget -nv https://trilinos.org/oldsite/download/files/trilinos-12.8.1-Source.tar.gz -O /opt/trilinos/trilinos.tar.gz

# Extract Trilinos source file

RUN tar xf /opt/trilinos/trilinos.tar.gz -C /opt/trilinos/ 

RUN rm -f /opt/trilinos/trilinos.tar.gz

RUN mv /opt/trilinos/trilinos-12.8.1-Source /opt/trilinos/trilinos

RUN mkdir /opt/trilinos/trilinos-build

# Compile Trilinos

RUN /opt/trilinos/do-configure 

RUN cd /opt/trilinos/trilinos-build && make -j 3 

#Link in a directory, and then set the workdir

RUN ln -s /opt/trilinos/trilinos-build/packages/muelu/doc/Tutorial/src /opt/muelu-tutorial 

WORKDIR /opt/muelu-tutorial



Container Runtimes8

▪ Many different container options
▪ Docker, Shifter, Singularity, Charliecloud, etc etc

▪ Docker containers useful for workstations
▪ Allows root level builds and control on personal machine

▪ NOT for HPC - Security issues, no shared resource integration

▪ Singularity best fit for our current HPC needs
▪ OSS, publicly available, support backed by Sylabs

▪ Simple image plan, support for HPC systems

▪ Docker image support, as well as custom Singularity builds

▪ Support for multiple architectures (x86, ARM, POWER)

▪ Large HPC community support 



Container DevOps @ Sandia9

▪Impractical for apps to use large-scale 
supercomputers for DevOps and/or testing 
▪ HPC resources have long batch queues

▪ Dev time commonly delayed as a result

▪Create deployment portability with 
containers
▪ Develop Docker containers on your laptop or 

workstation

▪ Leverage Gitlab registry services

▪ Separate networks maintain separate registries

▪ Import to target deployment

▪ Leverage local resource manager 

▪Deployment to Cray supercomputer now 
possible

Younge et. al, A Tale of Two Systems: Using Containers to Deploy HPC Applications on Supercomputers and Clouds, IEEE CloudCom 2017  



HPCG Container Performance

▪Modified Cray XC supercomputer to 
run Singularity containers

▪Create /opt/cray and 
/var/opt/cray on all images

▪Link in Cray system software
▪ XPMEM, CrayMPI, uGNI, etc

▪HPCG Benchmark in Container
▪ Compare Singularity on Cray

▪ Compare KVM on Cray

▪ Compare Amazon EC2 

▪Near-native (99.8%) efficiency when 
using Singularity on a Cray
▪ Poor scalability on EC2

Younge et. al, A Tale of Two Systems: Using Containers to Deploy HPC Applications on Supercomputers and Clouds, IEEE CloudCom 2017  



Discussion

▪Containers in HPC are different than containers in the cloud
▪ Running Docker alone is unacceptable on HPC

▪ Need for HPC-centric containerization – Singularity

▪Developing DevOps models for custom software ecosystems

▪Performance _can_ be near native
▪ Leveraging vendor libraries within a container is critical

▪ Cray MPI on Aries most performant

▪ Best-practices are necessary

▪Leveraging container model into current & future integrated code teams 
deployment and testing strategy



Future Directions

Many opportunities & challenges moving forward:

▪ Container and library interoperability is key 
▪ Vendor-blessed base images

▪ Facilities-blessed user-defined images – container signing?

▪ Standardization on image format and ABI compatibility is necessary

▪ Better system software architecture is needed
▪ Containers are a piece of a larger puzzle

▪ Better integration with HPC scheduling systems

▪ Experiment provenance possible?

▪ Support emerging HPC software ecosystems
▪ Large-scale data analytics

▪ Deep Neural Networks on supercomputers

▪ Non-batch streaming workloads

▪ etc etc



Questions?

a jyoung@sand ia .g ov
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