
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
FOSER 2010, November 7–8, 2010, Santa Fe, New Mexico, USA.
Copyright 2010 ACM 978-1-4503-0427-6/10/11...$10.00.

test or beta test what is deployed; the systems will be too big
to fail; we won’t know how to design them, or even be sure
what design is in this reality; many of these systems involve
civil and above all human safety; adversaries will continually
attack such systems, be those adversaries people on the attack,
machines on the attack, or errors, faults, and failures on the
attack; requirements will not be consistent, and sometimes
requirements will be way out of date and stakeholders long
departed if not dead; there will be a larger gap between such
ultra-large-scale systems and enterprise-scale systems than
between enterprise-scale systems and individual applica-
tions; chaos and inconsistencies will abound; failures will be
constantly occurring; people will be part of the system, and
inextricably so; and finally, such systems will be beyond hu-
man comprehension [1].

The questions are: how do we get one of these systems go-
ing and how do we change it as change is needed? As soft-
ware engineers our hands are tied because the tools we use
are typically defined by computer scientists who have an old-
fashioned concept about what software is and how it’s created.
Their idea in strawman form is that someone prepares a text
which is a static representation of executing software; that
text is checked to make sure it is written correctly (that is, it
is in the form of what programming language theoreticians
believe is proper for software), then that text is transformed
into executing software, and finally the running software is
judged a success, a failure, or something in between; later,
the process roughly starts over. This is nothing like how
ultra-large-scale systems will need to be treated. Naturally
there are lots of tools that address the real construction of
running software systems, but it’s still true that most “real”
programming languages center around what the compiler

“thinks” about source code presented to it, that performance
concerns dictate minimizing runtime representations and
overhead, and that all the other tools need to work around
these realities.

Each ultra-large-scale system will be installed at most once.
And once installed, it really cannot be stopped—too much
depends on it staying up. The source text we’re used to deal-
ing with is like a genetic code in that it describes what will be
created in the form of a running system—it’s the genotype
to the executing code’s phenotype—but this doesn’t help us
repair or extend something that’s already alive (doesn’t help

Abstract

Future software systems will be vast and impossible to re-
build. The tools engineers need to get them and keep them
running need to take advantage of the best we have in static
and dynamic languages—to begin with. Long-running sys-
tems must be repairable and extendable while they run. We
can leverage this longevity by designing our languages and
systems to learn about and create models for themselves, to
hypothesize improvements on themselves, discover and pro-
pose new capabilities, and to conscientiously assist in their
own upkeep and continual redesign. All while the system
never stops. Our lives will depend on it.

Categories and Subject Descriptors
D.2 [Software Engineering]; D.3 [Programming Languages]

General Terms
Design, Reliability

Keywords
Design, programming, self-healing, self-sustaining, self-de-
signing

t

Here are some of the unpleasant exciting things I believe
will be true about our future systems—that is, the ultra-
large scale ones that will grow to a size that prevents them
from being stopped and reinstalled, that need to be running
continuously or bad things will happen, and that must be
repaired and extended only while they are executing. They
will not be fully engineered; integration of the existing sys-
tems that make them up will display significant emergent
behavior that’s hard to predict; there will be no way to fully

Software Engineering as Live Performance

Richard P. Gabriel
IBM Research

Hawthorne, New York USA

dreamsongs.com

us.ibm.com{rpg@

115

us much). When I get a cold, my mother doesn’t gestate a
variant of me that doesn’t have a cold and somehow that near
clone replaces me in the real world. I take some medicine to
alleviate the symptoms and then my body fights off the cold
and heals itself. How would this translate to what a software
engineer would do?

Looking at some answers to this question will lead us to a
proposal about future software engineering research.

Suppose it’s the future; suppose software is still represented
as source text, and a component of a running system is found
to have a problem. The first thing might be to figure out what
conditions cause the problem or what observations signal the
problem is about to happen or already has happened. Then
the engineer could add some code to the running system—a
patch—that detects that bad situation and repairs it on the
fly or otherwise avoids it. One could think of this as a wrap-
per around the faulty component, but other techniques could
work. If the problem causes a component to fail, perhaps that
component could be rebooted; if a combination of inputs and
environmental conditions indicate a failure is about to hap-
pen, perhaps that combination can be avoided, or different
actions taken when they are detected, or the return values
of compromised components could be adjusted. Thereby the
symptoms of the problem could be temporarily alleviated
until a true fix can be found or constructed.

If the engineer can locate the problem and propose new
source text that would fix it, the next step would be to deter-
mine whether the repair will work. Remember: the system
cannot be stopped or paused significantly; perhaps lives de-
pend on the system operating at least as well as it is now. The
first line of attack should probably be offline.

Maybe one thing to try would be to create a simulation of
the running system with plausible inputs and environmen-
tal conditions derived from statistical models of the running
system in situ, with the proposed new component plugged
into the simulation. Because the system has been running
for a long time, there should be good models for most or all
of the components in the system. Perhaps, for example, the
behavior of a component can be modeled by a particular sat-
isfiability problem, and a sat-solver can be used in place of
the component. Using these models the engineer can perform
a range of testing that maybe is not so easy to do otherwise
because the component is not so easily isolated. One way that
can happen is that the component could be ephemeral in the
sense that no abstraction exists for it in the original source
code and therefore also not in the executing code aside from
patterns that can be recognized. Perhaps there is no way to
encode the ephemeral component in the original program-
ming language. Nevertheless, abstraction in the sense scien-
tists use the word can be performed—recognizing a pattern,
identifying its common and variable parts, and presenting
the recognized pattern in a canonical form.

Here’s what I mean by this. Suppose a piece of software is
written using the observer pattern from the Design Patterns

book [2]. If done in a usual way in a usual programming
language (today), this will result in a customized instance
or instances of a configuration of objects interacting in pat-
terned ways. It is possible, though, for a sophisticated pattern
matcher to recognize these patterns and present imagined
source code with the observer pattern explicit. This has been
called “registration” by some [3].

Our engineer, then, would be able to program in these
perceived patterns, and the results can be installed—via a
detailed surgery—into the simulated system (and later into
the running system).

These experiences will give the engineer some confidence
that the new component will work ok. But perhaps not enough.
The system cannot be stopped, so the engineer must gingerly
determine whether the new code can be substituted, so the
next step might be for the changed code to be introduced into
the system (which we can assume is currently running ok—
the temporary patch still holding), but in a provisional way,
with the problem component (assuming it’s a component) in
place to take the bulk of the load. All the real inputs could be
sent through the existing component (and its patches) while
the new component is turned on only at specific times and
places so that the engineer can watch what happens. Perhaps
the inputs are given both to the old and new component and
the (differing or same) results can be observed, maybe with
the original component still supplying the real results.

As confidence grows, maybe the engineer turns on a mode
in which the results of the original and revised components
are fed in pairs to the rest of the running system and a display
of differential effects is shown so the engineer can evaluate
the new component.

What this is like is being a guitarist who is joining a blues
band noodling around with a song with her amplifier down
low (or being played only through headphones), and as the
song is understood (blues players don’t typically use sheet
music), that amplifier is turned up and the audience can start
hearing the new player’s stuff along with the others’.

As the engineer works, the source code—real or imagined—
is displayed showing details of historical values for inputs,
variables (internal or global), fields, parts of data structures,
etc, as well as recent or current output values as the system
is running behind the scenes. Proposed changes can be ex-
amined as if they had been made (provisionally) in the run-
ning system as described. This way the effects of design and
implementation decisions can be seen in the running system
but without jeopardizing its current satisfactory execution.

As part of the process of (possibly accidentally) designing
and implementing the system, it might be sensible to retain
all the versions of all components that ever existed—in the
running system but possibly not being exercised. These ear-
lier versions were once considered state of the art, and so
there might be reasons to want to fall back on one of them.
Or perhaps on several of them. Or a combination of them
depending on the context including inputs and other observ-

116

able information. Perhaps one is faster on a certain family
of inputs or under certain conditions; perhaps one is really
needed only in a particular situation that occurs infrequently;
perhaps one is ultra-reliable under all conditions, but runs
slowly; perhaps one is guaranteed correct because it trans-
forms the problem solved by the component into a problem
that is explicitly solved using a general technique (like the
sat-solver mentioned earlier); perhaps one runs very quickly
but doesn’t produce much accuracy (a numeric component).
It might be sensible then to have a decision tree or neural net
or digitally evolved program look at the invocation situation
and select the right combination of versions of the component
to exercise. Moreover, having a set of versions of the same
component around, each with a different set of properties,
can shed light on the purpose and history of the component
and thereby of the whole system itself.

As the system runs, a large set of test cases can be gath-
ered—both positive and negative tests—which can be used
to direct searches for the best combinations and selections of
the existing components. This is a form of directed evolution
with the accumulated test cases acting as a fitness function.
And these tests can also be used to find other components (or
ephemeral components) that accomplish the same purpose.

When the possibility of combining and selecting behav-
ior, possibly based on machine learning, is available, it be-
comes possible to think about refactoring components and
recombining the factors differently to obtain candidate re-
placement components that might have some advantageous
characteristics.

t

What’s being described is a programming system—par-
ticularly the “runtime” portions—that is more suitable for
in-situ observation, diagnosis, and modification than most
of the ones software engineers currently have access to. In
particular, I’m talking about systems that are more aware
of how they are put together, how they are operating, and
how to modify themselves. Presently, the primary research
efforts in programming languages focus on how to produce
the smallest, fastest set of executable bits that will get a well-
envisioned piece of functionality running. There is little in-
terest in self-correction, self-repair, and self-awareness. Not
none; just little.

But before you label me a pure dynamicist, consider that
the benefits of static typing and being able to reason about
large portions of a system at once should not be given up on.
In the always-on vision of systems in the future, I see the
source text there too, with all the benefits of static descrip-
tions sitting side by side the benefits of dynamic observation.
Why not when you visit Firenze have a guide book with you
as you visit its glories? And why not when you observe the

actual runtime type of an object also observe its declared /
expected type—and be able to act on that information as well?

In the future imagined in the ULS report [1], ultra-large-
scale systems will be created at least in part by putting sys-
tems together, such systems perhaps not designed with the
others in mind. When new systems are added to an existing
system, it might turn out that there is a capability that the
newly added system has that is similar to a capability the old
system has and uses, and it would be useful if the existing
system could notice that and either recommend using the
better version or even wire that up itself. What I imagine is
that the provisional try-out mechanisms just described can
be exploited by the executing system itself to learn how to use
the new version and try using it out without any bad effects
until the system has confidence the new version is working
well or has been adapted to do so.

This means that the running system should be at least a bit
self-organizing. Further, the running system should exhibit
quenched disorder, which means that almost all executions
run through the usual execution paths, but every now and
then a random execution tries to find (in a provisional way)
alternative execution paths, based on similarity of function-
ality as determined by what the system is learning about it-
self while it’s running— so, the system should be continually
gathering and refining ideas about the “function” of each
component, what sorts of inputs components use, alternate
ways to accomplish its various purposes, and proposing if not
implementing improvements. These ideas can be couched in
terms of the test suites for different components (or larger
structures) that are being generated as the system runs.

In a similar fashion, the system should learn which inputs
and components are involved in problematic executions, and
learn how to alert someone (or something) about the prob-
lems, log them, and maybe learn to route around the problem
or adapt to provide proper behavior. As noted, there should
be lots of test cases gathered over, let’s say, a decade of execu-
tions, and maybe different models will have been learned that
can mimic components in the system.

Most of these ideas are about making existing function-
ality work better and more reliably, but there is another av-
enue: using the system to explore how it could extend itself.
Recent work in evolutionary algorithms has shown that in at
least some cases it is possible to find effective and advanta-
geous algorithms based on searching for novelty rather than
fitness. Such systems use a variation on genetic algorithms
but replace the usual fitness function that tells the genetic
algorithm how close it is to finding a solution with a novelty
function that tells how far a solution is from existing ones.
The surprising result [4] is that the approach of using a novelty
function within a constrained problem space but with behav-
iors that are relevant to that space can find solutions when
the fitness-function-based approach cannot, and with fewer
generations when both can find solutions. The basic reason
is that a novelty seeker is not deceived by local optima—it

117

is generally looking to do something different rather than
get close to something. In a deceptive environment—which
is filled with local optima—finding novel behaviors is more
likely to find a way to the real goal than trying to tune an
apparently nearby solution.

In a ULS system, it might make sense for the system to look
for novel behaviors it can perform, and to propose them to en-
gineers and stakeholders. For such an approach to work, there
might need to be a way to prune novel behaviors for utility.

What this all means is that an executing ultra-large-scale
system should not be a machine off in the wilderness just
chugging away, but it should be a self-aware, self-organizing,
self-healing, nearly conscious system that is preparing itself
for adaptation to the future.

t

But hold on you’re saying. This isn’t like what program-
ming is like today. That’s right. Programming is viewed as a
de novo exercise, whereas here it’s a modification / modula-
tion process. For a real engineer in the future, the world will
consist of modifying a system that cannot stop, whose proper
functioning is required all the time.

This is because the agenda of programming language de-
sign and environmental support precedes that of software
engineering—“precedes” as in has precedence. This has the
effect of imposing the theoretical ideas of programming on
the practical world, and for ultra-large-scale systems, engi-
neering will be very different from what is imagined in this
historical approach: programming language research and
thinking have been predicated on the concepts of correct-
ness, reasoning, proving correctness, efficiency of execution,
and preventing errors. In real ultra-large-scale systems, all
of those things would be nice, and can be achieved to some

degrees in some (relatively small (but growing)) circumstanc-
es, but it’s unrealistic to expect only perfect software to be
deployed. Moreover, reasoning—which is important both in
the old-fashioned way of thinking about programming and
in the examples I used above—in the new world of software
systems involves not only mathematical-style reasoning (de-
duction, mostly) but also induction (scientific validation) and
abduction (hypothesis formation). This involves sensors, ac-
tuators, transparency, record-keeping, automatic hypothesis
formation, learning, and the like. A software engineer needs
to work with running machinery, and the luxury of a fresh
start is simply not available.

What I propose for future software engineering research
and work is to imagine software engineering in a future filled
with ultra-large-scale systems, to imagine what sorts of lan-
guages, tools, and capabilities would be wonderful to have—
regardless of whether anything like them exists today—to put
together requirements for the whole range of future software
engineering mechanisms and methods, to then formulate a
plan to design and implement the imagined languages and
tools, and then build practices, theories, and models for soft-
ware engineering based on these technologies and capabilities.

References
[1] Pollack, W., et al. Ultra Large Scale Systems: The Software

Challenge of the Future. The Software Engineering In-
stitute. http://www.sei.cmu.edu/library/assets/ ULS_Book20062.

pdf. 2006.
[2] Gamma, E., et al. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley. 1994.
[3] Davis, S. & Kiczales, G. “Registration-Based Language

Abstractions.” Proceedings of the 25th Conference on Ob-
ject-Oriented Programming, Systems, Languages, and
Applications. Onward! 2010, Reno-Tahoe, 2010.

[4] Lehman, J.; Stanley, K. “Exploiting Open-Endedness to
Solve Problems Through the Search for Novelty.” Pro-
ceedings of the 11th International Conference on Artificial
Life (ALIFE XI). MIT Press. 2008.

118

