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Thousand years ago – Experimental Science

• Description of natural phenomena

Last few hundred years – Theoretical Science

• Newton’s Laws, Maxwell’s Equations…

Last few decades – Computational Science

• Simulation of complex phenomena

Today – Data-Intensive Science

• Scientists overwhelmed with data sets

from many different sources 

• Data captured by instruments

• Data generated by simulations

• Data generated by sensor networks

The Fourth Paradigm: Data-Intensive Science
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eScience is the set of tools and technologies
to support data federation and collaboration

• For analysis and data mining
• For data visualization and exploration
• For scholarly communication and dissemination

With thanks to Jim Gray
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Particle Physics and Astronomy
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Higgs I.Ii' 
challenge l'I!. 

Higgs Boson Machine Learning Challenge 

Use the ATLAS experiment to identify the Higgs boson 

$13 000 1 7 85 teams 4 ,ea sago 

Overv ,ev Data Discussion Leaderboard Rules 

Overview 

Description 

Evaluat ion 

Prizes 

About The Sponsors 

Timeline 

Winners 

,('(;-~ ATLAS >\ \ 
' 'l,,.~' 

Ji. EXPERIMENT 

- / 

Run:204153 

Event : 35369265 

2012-05-30 20:31 :28 UTC 



Imperial College Data Science 
London Institute 

DeepJet: Jet classification with the 
CMS experiment 

Markus Stoye 
Imperial College London, DSI 

"Big data science in astropartide physics" , HAP workshop, Aachen, Germany, 20th Feb. 2018 
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Partic e and vertex based DNN: DeepJet 
--700 400 250 
➔ ➔ ➔ 

• • • • 
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FC 

global 

-- 700 inputs and 250.000 model parameters 

• Particle and vertex based DN N has factor 10 less free parameters than a 
generic Dense DN N would have 

• 1 OOM jets used fo r training, overtraining is not an issue 
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Impact of DNN arch'tecture 

............................................. -...........__ ................................... -....---................................................. ....__..__ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
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Blue: generic DNN (650 inputs) 

e C QA e i uts) 
Red: Physics inspired DNN (650 inputs) 

Physics object based DN N performs best 



kaggle Search kaggle Q Competitions Datasets Kernels Discussion Learn •·· E9 

~ CERN · 656 teams · 22 days ago · --

Overview Data Kernels Discussion Leaderboard Rules 

Overview 

Description 

Evaluation 

Prizes 

About The Sponsors 

Timeline 

To explore what our universe is made of, 

scientists at CERN are colliding protons, 

essential ly recreating min i big bangs, and 

meticu lously observing these collisions with 

intricate silicon detectors. 

While orchestrating the collisions and 

observations is already a massive scientific 

accomplishment, analyzing the enormous 

amounts of data produced from the experiments 

is becoming an overwhelming challenge. 

25,000 
Prize Money 



Machine Learning in Astronomy
Machine learning and the Dark Energy Survey (DES)

- Classification:

galaxy type (0908.2033), star/galaxy (1306.5236),        

Supernovae Ia (1603.00882)

- Photo-z (1507.00490) 

- Mass of the Local Group (1606.02694) 

- Search for Planet 9 in DES

Slides thanks to Ofer Lahar



Photometric Classification of Supernovae 

Lochner, McEwen, 

Peiris, Lahav, Winter

arXiv: 1603.00882 
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PLAsTiCC Astronomical Classification 
Can you help make sense of t he Universe? 

$25,000 
Prize Money 

~ LSST Pro;ect 34 teams 3 months to go (2 months ro go until lli!!fger dead~ne) 

Overvi~ v 

D 

Evaluation 

Prizes 

nmeline 

el s.c ,e f -e world's le;;d1 ng astr omers 

g asp the esDe., propgties of the u i\·e.rse. 

we've 
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SQUARE KILOMETRE ARRAY 
Exploring the Universe with the world's largest radio telescope 

Choose your local minisite , -, _ _ _ _ _ 
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Home » SKA Project 

SKA Project 

Artist impress,on of the Square Kilometre Allay 

11!1 Pn t IS p 

The Square Kilometre Array (SKA) project is an international 

effort to build the world 's largest radio telescope, with 

eventually over a square kilometre (one million square 

metres) of collecting area. The scale of the SKA represents a 

huge leap forward in both er I and research & 

development towards building and delivering a unique 
instrument, with the detailed design and preparation now well 

under way. As one of the largest scientific endeavours in 

history, the SKA will bring together a wealth of the world's 

finest scientists, engineers and policy makers to bring the 

project to fruition. 

Latest News 

22nd Dea: er 2015 

2015: a big year for ASKAP! 

21 December 2015 

Outcomes Of The 19th SKA 
Board Meeting 

7th December 2015 

Australia Announces AUS$293.7 

Million for the SKA 



Data Flow through the SKA

Footer text

SKA1-LOW

SKA1-MID

~2 Pb/s

8.8 Tb/s

7.2 Tb/s

~50 PFLOPS

~5 Tb/s

100 PFLOPS

Users

130 - 300 PB/yr

Exploring the Universe with t h e world's largest radio telescope D 



Big Scientific Data from Large 
Experimental Facilities in the UK



Central Laser 
Facility

ISIS (Spallation

Neutron Source)

Diamond Light 
Source

LHC Tier 1 computing
JASMIN Super-Data-Cluster

Rutherford Appleton Laboratory



Nucleous

Cryo-SXT Data

● Noisy data, missing wedge artifacts, missing

boundaries

● Tens to hundreds of organelles per dataset

● Tedious to manually annotate

● Cell types can look different

● Few previous annotations available

● Automated techniques usually fail

Segmentation

Neuronal-like mammalian cell line; single 
slice

Nucleus

Cytoplasm

Challenges:

Data

● B24: Cryo Transmission X-ray Microscopy beamline at DLS

● Data Collection: Tilt series from ±65° with 0.5° step size

● Reconstructed volumes up to 1000x1000x600 voxels

● Voxel resolution: ~40nm currently

● Total depth: up to 10μm

● GOAL: Study structure and morphological changes of whole cells

3D Volume Data

Segmentation of Cryo-Soft X-ray 
Tomography (Cryo-SXT) data

Computer Vision
Laboratory

B24 beamline
Data Analysis Software Group

scientificsoftware@diamond.ac.uk

. diamond 
The University of 

Nottingham 
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Nucleo
us

Workflow

Data 
Preprocessing

Data 
Representation

Feature 
Extraction

User’s Manual 
Segmentations

Classification

Tomographic Cell Analysis: Feature Extraction
Features are extracted from voxels to represent their appearance: 

● Intensity-based filters (Gaussian Convolutions)

● Textural filters (eigenvalues of Hessian and Structure Tensor)

User Annotation + Machine Learning

Refinement

User 
Annotations

Predictions Refinement

Using few user annotations as an input:

● Machine learning classifier (Random Forest) trained to discriminate between 

Nucleus and Cytoplasm and predict the class of each SuperVoxel

● Markov Random Field then used to refine the predictions

scientificsoftware@diamond.ac.uk



• Part of UKRI STFC Central Laser 
Facility at Harwell Campus

• Cluster of microscopes and lasers 
and expert end-to-end 
multidisciplinary support

• National imaging facility with peer-
reviewed, funded access

The OCTOPUS Imaging Village

➢ Look at example of Single Molecule 
Super-resolution Microscopy 

➢ Use technique of Fluorescence Localisation
Imaging with Photobleaching (FLImP)

➢ 400 nm → 10 nm

STFC-funded 

Cellular Imaging 
>200 nm resolution 

Single Particle Imaging 
>5 nm resolution 



Automated acquisition with Machine Learning

Key task - identify ROIs to acquire FLImP data
• Segment cell type of interest from in NSCLC biopsy

• Fibroblasts, epithelial, endothelial, red blood

• Segment ROI good for single molecule FLImP

• Well focussed, separated spots with smooth background

• Deep learning (CNNs) proven in cell segmentation

• We wish to apply this to our system to identify the ROIs

Single  molecules in an

epithelial cell from EBUS

ROI = Region Of Interest

Scan sample 
Brlghtfleld & TIRF. 

Cell segmentation 
Locate boundaries 
of relevant cells. 
Deep leamlng. 

Find good FLlmP ROIS 
Suitable fluorescent 

spot properties. Determine 
photobleachlg needs. 

Co 
Autor 

t 
&sep 

OUtput 
~ Deep learning & Acquire FUmP data 

expllclt analysis. Time series of TIRF Images. 
Automatically determine 
acquisition parameters. 



FLImP Vision for Personalized Cancer Care 

Fully automate from acquisition to output

• Increase efficiency and impact in lab research

• Automated structure fingerprint for personalised cancer care in clinic

Microscope 
slides 

1 

Patient 
biopsy 

@ 

Patient database 

@ 

. sv samples 
process b10P d irnager 

in automate 

Cell 
segmentation 

Machine learning classifiers 

Acquire 
FLlmPdata 

:::::=:::: :.:~ .... ·~:·~ ~" '-----"""" ,,,,, .. ~,;,~.:-: .. ~-~ 
Research database 

Feedback patient outcomes 

Patient-specific 
predictions & decisions 



Another type of Big Scientific Data 
and Machine Learning



M. C. Swain, J. M. Cole J. Chem. Inf. Model. 56 (2016) 1894-1904 

www.chemdataextractor.org Slide thanks to Jacqui Cole

Scien -_ iflc 
Literature 

e 
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Chemical 
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‘Chemistry-Aware’ aspect of 

- Natural language processing w/ interdependency resolution to resolve chemical names & match them to material properties
- Machine learning is incorporated to improve text-mining extraction performance as the tool is progressively used

Chemical Property # 1  Property # 2 

Name (e.g. wavelength) (e.g. 

intensity)

<Chemical name 1> 453 nm 10,030 

<Chemical name 2> 357 nm 12,404

<Chemical name 3> 846 nm 10,204

<Chemical name 4> 743 nm 30,049

…. … ….

Input Process Output

https://www.nature.com/articles/sdata2018111Slide thanks to Jacqui Cole

Scientific 
Literature 

[2ii ChemDataExtractor 

[2D ChemDataExtractor 

Sentence 
Splitting 

~ 

Tokenization 

' Part-of-speech 
Tagging 

' Entity 
Recognition 

' Phrase Parsing 

' Information 
Extraction 

' Interdependency 
Resolution 

' 
Database 

r t r Figure 2 shows the UV-vis absorption 
spectra of 3a (red) and 3b (blue) in acetonitrile. 

[ Fig~ [3__ shows [ the I [ UV-vis j ~ orption J [ spectra of 

[ 3a [ (] red ] ) and ] ' 3b ( [ blue in J acetonitrile ·J 

NN 

2 shows [ the I r UV-vis ] absorption J [ spectra of 
GD VBZ OT NN NN NNS IN 

1(7 red 1)1 [ and ] 3b [{ 
JJ CC NN JJ 

Spectrum 

Type 

) ~ 
IN 

Of 

acetonitrile 
CM 

In 

·J 

UV~vis 
1 

[ abso:ption I I 

~ blue l acetonit~ 

3a -[ 2-[2-[4-(dimethylamino)phenyl]diazenyl]-benzoic acid 

3b ---[ 2-[2-[4-(dipropylamino)phenyl]diazenyl] -benzoic acid 



Databases

Data Extraction
Stage 1 Stage 2

Data Enrichment

• Machine learning

• Quantum-chemical 
calculations (j)

Enriched Data

Stage 3

Create algorithms for
materials prediction

Stage 4

Prediction &
Validation

• Materials 
Prediction

• Experimental 
Validation

Photovoltaics

Magnetism

Catalysis

Applications

Feedback

Data-Driven Materials Discovery Workflow

Slide thanks to Jacqui Cole

Academic 
Literature 

I~ Chem Data Extractor 

• 
Physica'. I 

properties 



Environmental Science
and the JASMIN ‘Super Data Cluster’



Centre for Environmental Data Analytics

JASMIN Super-Data Cluster infrastructure
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► 16 PB Fast Storage 
(Panasas, many Tbit/ s bandwidth) 

► 1 PB Bulk Storage 

► Elastic Tape 

► 4000 cores: half deployed as 
hypervisors, half as the 
"Lotus" batch cluster. 

► Some high memory nodes, 
a range, bottom heavy. 

,,,,,,~~(~ ~ 
.: . . . . . 



JC2-LSW1 JC2-LSW1 JC2-LSW1JC2-LSW1 JC2-LSW1 JC2-LSW1 JC2-LSW1 JC2-LSW1 JC2-LSW1JC2-LSW1 JC2-LSW1 JC2-LSW1

48 * 16 = 768 10GbE Non-blocking
16 x 12 x 40GbE = 192 40GbE ports

S1036 = 32 x 40GbE

JC2-LSW1JC2-LSW1

JC2-SP1 JC2-SP1 JC2-SP1 JC2-SP1 JC2-SP1 JC2-SP1

16 x MSX1024B-1BFS
48x10GBE + 12 40 GbE

16 x 12 40GbE = 192 Ports / 32 = 6
Total 192 40 GbE Cable

1,104 x 10GbE Ports CLOS L3 ECMP OSPF

• ~1,200 Ports expansion 

• Max 36 leaf switches :1,728 Ports @ 10GbE

• Non-Blocking, Zero Contention (48x10Gb = 12x 40Gb uplinks)

• Low Latency (250nS L3 / per switch/router) 7-10uS MPI

954 Routes

954 Routes

Non-blocking, low latency, CLOS Tree Network



Large data sets: satellite observations

Sentinel 1A: Launched 2014 
(18 due 2016) 

• Key instrument: Synthetic Aperture Radar 
• Data rate (two satel lites: raw 1.8 TB/day, archive 

products"' 2 PB/year) 

COMET: Centre for Observation and Modelling of 
Earthquakes, Volcanoes, and Tectonics 

(Picture cred ts: ES!\, Ariariespace.com, PPO.labs· orut-COMET-SEOM lnsarap ~tudy, ewf.nerc.ac.11Jk/2014/09/02/new-satellite-maps-out-napa-valley-earthquake/ I 
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10 
Consequences 

More Data 

Fig. 2 The vo lume of 
worldwide cl imate data 
is expanding rapidly, 
creating challenges for 
both physica l archiv ing 
and sharing, as we ll as 
for ease of access and 
fi nding what's needed , 
particu larly if you 're 
not a climate scientist. 

(B NL: Even if you are?) 

@ National Centre for 
Atmospheric Science 
MUUU,L l!NvtkONH!.Nt lt!i!iltff C:OUHCIL 
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Why JASMIN? 
Bryan Lawrence • RAL, June 2016 
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Example: The Sentinel Hub Cloud Detector

https://medium.com/sentinel-hub/improving-cloud-detection-with-machine-learning-c09dc5d7cf13

Improving Cloud Detection with Machine Learning
This is a story about clouds. Real clouds in the sky. Sometimes you love them and sometimes you wish they 
weren’t there. If you work in remote sensing with satellite images you probably hate them. You want them 
gone. Always and completely. Unfortunately, the existing cloud masking algorithms that work with Sentinel-2 
images are either too complicated, expensive to run, or simply don’t produce satisfactory results. They 
misidentify clouds too often and/or like to identify clear sky over land as clouds.

MclilntTanmalciadsthn111p mdaum.Santfuf-2imlpfmm 2D11-12-15m lantinel HMltlliPlth II doud mllitpnldaaed\1illththeSl!11d1111!1 HultCIDud 
Detectaratthreed"dre•ntmam law!ls. 



• Machine Learning approach can give 
state-of-the-art results if the training 
and validation sets are both of good 
enough quality and representative of 
the unseen data.

• Procurement of labeled samples in 
remote sensing that are suitable for 
development of models that perform 
well on a global scale is particularly 
challenging. 

• With the new labeled data sets 
curated with the help of community, 
the performance of our cloud 
detector can only improve.

Sentinel Hub Blog: Results and Concluding remarks

fraction of classifica1ions as clouds 

Clloud 89 % 975% 994% 

© 
Cirrus 883% 877% 838% 

_Q Land 7296 5.7% 2.2% co 
...J 
© Water 2 96 0.0% 0. % :J 
F 

Snow 392% 307% 13.5% 

Shadow 96 3.9% 5.8% 

Cloud and ci rrus cloud detection rates and la nd, water, snow and sh,adow misc lassification irat:es as clouds as 

det.ermined using 108 Sentinel-2 scenes hand labeled by Hol lst.ei'n et al. 



An Engineering Example:
Electric Vehicle Batteries



Machine Learning and EV Battery Lifetime Prediction 
at Warwick Manufacturing Group

Wide range of usage duty cycles
• Automotive (main sector)
• Off-highway
• Domestic renewables

Steinbuch - wordpress

Proposed modelling approach
• Understand the interactions via 

Machine Learning methods
• Quantify prediction uncertainties
• Couple with underlying physical processes

Models used to predict lifetime validated at 
much shorter time-scales

• Lifetime prediction ~ 8-15 years
• Data collection ~ 6-14 months

Slide thanks to Dhammika Widanalage and Theo Damoulas

.... • UK Leaf (2013on, 24! Wh models) battery State Of Health vs. Age at Feb 2017 

2.82 

2.8 

~ 
z-2.72 
·;:; ., 
g- 2.7 
u 

2.68 

2.66 

2.64 

' ' ' 

/ Measure<! remainng capacity. 20"!i, 25•c 

' :-. .... 
' I ' .... !' ', ... ... 

' ... 
Regre!! ionmodel.20%2S•c ' 

2.62 ------------------
0 2000 4000 6000 8000 10000 12000 

Time (Hours) 



Battery Ageing Data 
• Data sets to include a diverse set of 

usage profiles.

• Data sets to include

▪ Cell ageing for future EV battery 
packs evaluation 

▪ Telemetry data of cell ageing from 
vehicle usage

• Combination of data, modelling and 
machine learning will link fundamental 
research to production and 
consumption decisions for EVs 

Storage Cycling

Usage 
profiles

Slide thanks to Dhammika Widanalage and Theo Damoulas



Approach: Multi-scale Modelling, Data and Machine Learning

Electrochemical 
based 

Data/empirical 
Probabilistic 

deep-learning

Slide thanks to Dhammika Widanalage and Theo Damoulas

Transition metal oxide 
+ve cathode lattice 

Carbon anode 
layers -ve 
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Some concerns …



How can Academia compete with Industry on 
Machine Learning and AI?

Companies like Facebook, Google, Amazon, Microsoft (and probably 
Baidu, Alibaba and Tencent) and have three key advantages over 
academia:

1. These companies all have many, very large, private datasets that 
they will never make publicly available

2. Each of these companies employs many hundreds of computer 
scientists with PhDs in Machine Learning and AI

3. Their researchers and developers have essentially unlimited 
computing power at their disposal

➢ NLP, Machine Translation, Image Recognition, …



Berkeley Lab 'Minintalist Machine 
Learning' Alg:orithtns Analyze lntages F 1ro01 
Very Little Data 
CAI\lfERA researclters develop, highly efficient ,convolution neural networks t aHor,ed for 
analyzing experimental scientific images from Hmited training d.ata 

p 



Adversarial Noise and Deep Learning?

"panda'' 
57 .7% confidence 

+ 

"gibbon'' 
99.3 % confidence 

On the left 1s the original image; in the middle, the perturbation; and on the right, the nnal, perturbed image. I Image by Ian Goodfellm,1 o athon Shlens a d Christian Szegedv 



arXiv:1808.03305v1 [cs.CV] 9 Aug 2018

The Elephant in the Room Amir Rosenfeld, Richard Zemel, and John K. Tsotsos

https://arxiv.org/pdf/1808.03305.pdf


arXiv:1808.03305v1 [cs.CV] 9 Aug 2018

The Elephant in the Room Amir Rosenfeld, Richard Zemel, and John K. Tsotsos

https://arxiv.org/pdf/1808.03305.pdf


Slide thanks to Bryan Lawrence

Career paths for Research
Software Engineers and Data Scientists? 

How we worked 

Pl stands on the shoulders of 
her postdocs and students 
(and as Newton would have 

said, the giants.) 

How we work 

Pl stands on the shoulders of her 
postdocs, students, software engineers 

and data scientists. 
(Are the giants down with the turtles?) . 

► It 's fair to say that our institutions have not really caught onto the necessity to 
have careers for everyone in that stack. 

► From t he people managing vocabularies and manually entering metadata, to the 
software engineers and data scientists, we have new careers appearing, and we ' re 
not really ready for it. 

► Mercifully we're not alone , bioinformatics 1s blazing a similar trail, but we have 
m uch to do. 

Trends in Computing for Clim te Research 
Bryan Lawrence - leptoukh lecture, AGU 2014 



 

 

"Any opinions, findings, conclusions or recommendations 

expressed in this material are those of the author(s) and do not 

necessarily reflect the views of the Networking and Information 

Technology Research and Development Program." 
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